Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

76 

Full text

(1)

❚❍❆▼■▲❊❙ ❙❆◆❚❖❙ ◆❯◆❊❙

❙■❙❚❊▼❆❙ ❙■◆●❯▲❆❘❊❙ ❍■P❊❘❇Ó▲■❈❖❙

❉✐ss❡rt❛çã♦ ❛♣r❡s❡♥t❛❞❛ à ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❱✐ç♦s❛✱ ❝♦♠♦ ♣❛rt❡ ❞❛s ❡①✐✲ ❣ê♥❝✐❛s ❞♦ Pr♦❣r❛♠❛ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛✱ ♣❛r❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ▼❛❣✐st❡r ❙❝✐❡♥t✐❛❡✳

❱■➬❖❙❆

(2)

Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

T

Nunes, Thamiles Santos,

1991-N972s

2017

Sistemas singulares hiperbólicos / Thamiles Santos Nunes.

– Viçosa, MG, 2017.

viii, 66f. : il. (algumas color.) ; 29 cm.

Orientador: Bulmer Mejía García.

Dissertação (mestrado) - Universidade Federal de Viçosa.

Referências bibliográficas: f.65-66.

1. Sistemas dinâmicos diferenciais. I. Universidade Federal

de Viçosa. Departamento de Matemática. Programa de

Pós-graduação em Matemática. II. Título.

(3)
(4)

❉❡❞✐❝♦ ❡st❡ tr❛❜❛❧❤♦ ❛♦s ♠❡✉s ♣❛✐s✱ ❏♦s✐❧❡✐❞❡ ❡ ❏♦ã♦ ❇❛t✐st❛✳

(5)

❖ ê①✐t♦ ❞❛ ✈✐❞❛ ♥ã♦ s❡ ♠❡❞❡ ♣❡❧♦ ❝❛♠✐♥❤♦ q✉❡ ✈♦❝ê ❝♦♥q✉✐st♦✉✱ ♠❛s s✐♠ ♣❡❧❛s ❞✐✜❝✉❧❞❛❞❡s q✉❡ s✉♣❡r♦✉ ♥♦ ❝❛♠✐♥❤♦✳

❆❜r❛❤❛♠ ▲✐♥❝♦❧♥

(6)

❆❣r❛❞❡❝✐♠❡♥t♦s

❆❣r❛❞❡ç♦ ♣r✐♠❡✐r❛♠❡♥t❡ ❛ ❉❡✉s q✉❡ ♠❡ ❣✉✐♦✉ ❞✉r❛♥t❡ ❡ss❛ ❝❛♠✐♥❤❛❞❛✳ ❆♦s ♠❡✉s ♣❛✐s ❡ ✐r♠ã♦s ♣❡❧♦ ❝❛r✐♥❤♦ ❡ ❛♣♦✐♦✱ ❡♠ ❡s♣❡❝✐❛❧ à ♠✐♥❤❛ ♠ã❡ ❏♦s✐❧❡✐❞❡ ❙❛♥t♦s ◆✉♥❡s q✉❡ ❝♦♥tr✐❜✉✐✉ ❞❡ ♠❛♥❡✐r❛ tã♦ ♠❛r❝❛♥t❡ ❡♠ ♠✐♥❤❛ ❢♦r♠❛çã♦✳

❆❣r❛❞❡ç♦ ❛♦ ♠❡✉ ♦r✐❡♥t❛❞♦r✱ ❇✉❧♠❡r✱ ♣❡❧❛ ♣❛❝✐ê♥❝✐❛✱ ❝♦♠♣❛♥❤❡✐r✐s♠♦✱ ❛♣r❡♥❞✐③❛❞♦ ❡ ♣❡❧❛s s✉❛s ❝♦rr❡çõ❡s✳

❆❣r❛❞❡ç♦ ❛♦ ❊❞❡r ▲❡❛♥❞r♦ ❡ ❛♦ ▲á③❛r♦ ♣❡❧♦ ❛♣♦✐♦ ❡ ✐♥❝❡♥t✐✈♦✱ ❛♦s ♠❡✉s ❝♦❧❡❣❛s ❞❡ ❝✉rs♦ ♣❡❧❛ ❛♠✐③❛❞❡✱ ♠♦♠❡♥t♦s ❞❡ ❞❡s❝♦♥tr❛çã♦ ❡ ❞❡ ❡st✉❞♦s✳ ❱♦❝ês ✜③❡r❛♠ ♣❛rt❡ ❞❛ ♠✐♥❤❛ ❢♦r♠❛çã♦ ❡ ✈ã♦ ❝♦♥t✐♥✉❛r ♣r❡s❡♥t❡s ❡♠ ♠✐♥❤❛ ✈✐❞❛✳

❆♦s ♣r♦❢❡ss♦r❡s ❡ ❢✉♥❝✐♦♥ár✐♦s ❞♦ ❉▼❆✲❯❋❱✱ ♣♦r ❝♦❧❛❜♦r❛r❡♠ ❝♦♠ ❛ ♠✐♥❤❛ ❢♦r♠❛çã♦ ❡ ♣❡❧♦s ❡✜❝✐❡♥t❡s s❡r✈✐ç♦s ♣r❡st❛❞♦s✳

❆❣r❛❞❡ç♦ ❛ t♦❞♦s q✉❡ ❞❡ ❛❧❣✉♠❛ ❢♦r♠❛ ❝♦♥tr✐❜✉ír❛♠ ♣❛r❛ ❛ ❝♦♥str✉çã♦ ❞❡st❡ tr❛❜❛❧❤♦✳

❋✐♥❛❧♠❡♥t❡✱ ❛❣r❛❞❡ç♦ à ❈❆P❊❙ ♣❡❧♦ ❛♣♦✐♦ ✜♥❛♥❝❡✐r♦ ✐♥❞✐s♣❡♥sá✈❡❧ ♣❛r❛ ❛ r❡❛❧✐③❛çã♦ ❞❡st❡ tr❛❜❛❧❤♦✳

(7)

❙✉♠ár✐♦

❘❡s✉♠♦ ✈✐✐

❆❜str❛❝t ✈✐✐✐

■♥tr♦❞✉çã♦ ✶

✶ ❙✐st❡♠❛s ❉✐♥â♠✐❝♦s ✹

✶✳✶ Pr❡❧✐♠✐♥❛r❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✷ ◆♦t❛çõ❡s ❡ ❉❡✜♥✐çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✸ ❘❡❧❛çã♦ ❡♥tr❡ ❙✐st❡♠❛s ❈♦♥tí♥✉♦s ❡ ❉✐s❝r❡t♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ✶✳✹ ❚❡♦r❡♠❛ ❞♦ ❋❧✉①♦ ❚✉❜✉❧❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺

✷ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡ ✶✽

✷✳✶ Pr❡❧✐♠✐♥❛r❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✷✳✷ ❚❡♦r❡♠❛ ❞❡ ●r♦❜♠❛♥✲❍❛rt♠❛♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✸ ✷✳✸ ❈♦♥❥✉♥t♦s ❍✐♣❡r❜ó❧✐❝♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ✷✳✸✳✶ ❊①❡♠♣❧♦s ❚r✐✈✐❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ✷✳✸✳✷ ❋❡rr❛❞✉r❛ ❞❡ ❙♠❛❧❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷ ✷✳✹ ❱❛r✐❡❞❛❞❡s ■♥✈❛r✐❛♥t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹

✸ ❆tr❛t♦r ❞❡ ▲♦r❡♥③ ✸✻

✸✳✶ ■♥tr♦❞✉çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻ ✸✳✷ Pr♦♣r✐❡❞❛❞❡s ❞❛s ❊q✉❛çõ❡s ❞❡ ▲♦r❡♥③ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✼ ✸✳✸ ▼♦❞❡❧♦ ❣❡♦♠étr✐❝♦ ❞♦ ❆tr❛t♦r ❞❡ ▲♦r❡♥③ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✾

(8)

✹ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡ ❙✐♥❣✉❧❛r ✹✸ ✹✳✶ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡ ❋r❛❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✸ ✹✳✷ ❙✐♥❣✉❧❛r✐❞❛❞❡s ■♥❝♦r♣♦r❛❞❛s ❡ ❚✐♣♦ ▲♦r❡♥③ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✽ ✹✳✸ ❋❧✉①♦ ▲✐♥❡❛r ❞❡ P♦✐♥❝❛ré ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✵ ✹✳✹ ❙♦❜r❡ ❈♦♥❥✉♥t♦s ❙✐♥❣✉❧❛r❡s ❍✐♣❡r❜ó❧✐❝♦s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✸ ✹✳✺ ❈❛♠♣♦ ❙✐♥❣✉❧❛r ❆①✐♦♠❛ ❆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✽ ✹✳✺✳✶ ❊①❡♠♣❧♦ ❞❡ ❈❛♠♣♦ ❙✐♥❣✉❧❛r ❆①✐♦♠❛ ❆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✶

❘❡❢❡rê♥❝✐❛s ❇✐❜❧✐♦❣rá✜❝❛s ✻✺

(9)

❘❡s✉♠♦

◆❯◆❊❙✱ ❚❤❛♠✐❧❡s ❙❛♥t♦s✱ ▼✳❙❝✳✱ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❱✐ç♦s❛✱ ❥✉❧❤♦ ❞❡ ✷✵✶✼✳ ❙✐st❡♠❛s ❙✐♥❣✉❧❛r❡s ❍✐♣❡r❜ó❧✐❝♦s✳ ❖r✐❡♥t❛❞♦r✿ ❇✉❧♠❡r ▼❡❥í❛ ●❛r❝í❛✳

◆❡st❡ tr❛❜❛❧❤♦ ❞❡♠♦♥str❛♠♦s ❛❧❣✉♥s t❡♦r❡♠❛s q✉❡ tr❛t❛♠ ❞❛ ❡str✉t✉r❛ ❧♦❝❛❧ ❞♦s ❙✐st❡♠❛s ❉✐♥â♠✐❝♦s✱ ❝♦♠♦ ♦ ❚❡♦r❡♠❛ ❞♦ ❋❧✉①♦ ❚✉❜✉❧❛r✱ q✉❡ é ❛♣❧✐❝❛❞♦ ❛ ♣♦♥t♦s r❡❣✉❧❛r❡s✱ ❡ ♦ ❚❡♦r❡♠❛ ❞❡ ●r♦❜♠❛♥✲❍❛rt♠❛♥✱ q✉❡ é ❛♣❧✐❝❛❞♦ ❛ ♣♦♥t♦s s✐♥❣✉❧❛r❡s ❤✐♣❡r❜ó❧✐❝♦s✳ ❚❛♠❜é♠ ❞❡✜♥✐♠♦s ❝♦♥❥✉♥t♦s ❍✐♣❡r❜ó❧✐❝♦s✱ P❛r❝✐❛❧♠❡♥t❡ ❍✐♣❡r❜ó❧✐❝♦s✱ ❉❡❝♦♠♣♦s✐çã♦ ❞♦♠✐♥❛❞❛✱ ❋❧✉①♦ ▲✐♥❡❛r ❞❡ P♦✐♥❝❛ré ❡ ❈❛♠♣♦ ❙✐♥❣✉❧❛r ❆①✐♦♠❛ ❆✳ ◆♦ ❡♥t❛♥t♦✱ ♦ ♣r✐♥❝✐♣❛❧ ♦❜❥❡t✐✈♦ ❞❡st❡ tr❛❜❛❧❤♦ é ♦ ❡st✉❞♦ ❞❡ ❙✐st❡♠❛s ❉✐♥â♠✐❝♦s ❙✐♥❣✉❧❛r❡s ❍✐♣❡r❜ó❧✐❝♦s✱ ♦s q✉❛✐s sã♦ s✉❜❝♦♥❥✉♥t♦s ❝♦♠♣❛❝t♦s ❡ ✐♥✈❛r✐❛♥t❡s ❞❡ ✉♠❛ ✈❛r✐❡❞❛❞❡ ❢❡❝❤❛❞❛ q✉❡ ❛❞♠✐t❡♠ ✉♠❛ ❞❡❝♦♠♣♦s✐çã♦ ❝♦♥tí♥✉❛ ❞♦ ✜❜r❛❞♦ t❛♥❣❡♥t❡ ❡♠ ❞♦✐s s✉❜✜❜r❛❞♦s ✐♥✈❛r✐❛♥t❡s✱ ♦♥❞❡ ✉♠ ❞❡❧❡s t❡♠ ✉♠ ❝♦♠♣♦rt❛♠❡♥t♦ ❝♦♥tr❛t✐✈♦ ❡ ♦ ♦✉tr♦✱ s❡♥❞♦ ❞♦♠✐♥❛❞♦ ♣❡❧♦ ♣r✐♠❡✐r♦✱ ❡①♣❛♥❞❡ ár❡❛✳ ❆❧é♠ ❞✐ss♦✱ sã♦ s✐st❡♠❛s ❝✉❥❛s s✐♥❣✉❧❛r✐❞❛❞❡s sã♦ t♦❞❛s ❤✐♣❡r❜ó❧✐❝❛s✳ ❆❜♦r❞❛♠♦s t❛♠❜é♠ ✉♠ ❡①❡♠♣❧♦ ❞❡ ❝♦♥❥✉♥t♦ ❙✐♥❣✉❧❛r ❍✐♣❡r❜ó❧✐❝♦✱ ♦ ❆tr❛t♦r ❞❡ ▲♦r❡♥③ ❡ ♦ ♠♦❞❡❧♦ ❣❡♦♠étr✐❝♦ ❞❡ss❡ ❆tr❛t♦r✳

(10)

❆❜str❛❝t

◆❯◆❊❙✱ ❚❤❛♠✐❧❡s ❙❛♥t♦s✱ ▼✳❙❝✳✱ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❱✐ç♦s❛✱ ❏✉❧②✱ ✷✵✶✼✳ ❙✐♥❣✉❧❛r ❍②♣❡r❜♦❧✐❝ ❙②st❡♠s✳ ❆❞✈✐s❡r✿ ❇✉❧♠❡r ▼❡❥í❛ ●❛r❝í❛✳

■♥ t❤✐s ✇♦r❦ ✇❡ ❞❡♠♦♥str❛t❡ s♦♠❡ t❤❡♦r❡♠s t❤❛t ❞❡❛❧ ✇✐t❤ t❤❡ ❧♦❝❛❧ str✉❝t✉r❡ ♦❢ ❉②♥❛♠✐❝❛❧ ❙②st❡♠s✱ s✉❝❤ ❛s t❤❡ ❚✉❜✉❧❛r ❋❧♦✇ ❚❤❡♦r❡♠✱ ✇❤✐❝❤ ✐s ❛♣♣❧✐❡❞ t♦ r❡❣✉❧❛r ♣♦✐♥ts✱ ❛♥❞ ●r♦❜♠❛♥✲❍❛rt♠❛♥✬s ❚❤❡♦r❡♠✱ ✇❤✐❝❤ ✐s ❛♣♣❧✐❡❞ t♦ s✐♥❣✉❧❛r ❤②♣❡r❜♦❧✐❝ ♣♦✐♥ts✳ ❲❡ ❛❧s♦ ❞❡✜♥❡ ❍②♣❡r❜♦❧✐❝ s❡t✱ P❛rt✐❛❧❧② ❍②♣❡r❜♦❧✐❝✱ ❉♦♠✐♥❛t❡❞ ❙♣❧✐tt✐♥❣✱ ▲✐♥❡❛r P♦✐♥❝❛ré ❋❧♦✇ ❛♥❞ ❙✐♥❣✉❧❛r ❆①✐♦♠ ❆ ✈❡❝t♦r ✜❡❧❞✳ ❍♦✇❡✈❡r✱ t❤❡ ♠❛✐♥ ♦❜❥❡❝t✐✈❡ ♦❢ t❤✐s ❞✐ss❡rt❛t✐♦♥ ✐s t❤❡ st✉❞② ♦❢ ❙✐♥❣✉❧❛r ❍②♣❡r❜♦❧✐❝ ❉②♥❛♠✐❝❛❧ ❙②st❡♠s✱ ✇❤✐❝❤ ❛r❡ ❝♦♠♣❛❝t ❛♥❞ ✐♥✈❛r✐❛♥t s✉❜s❡ts ♦❢ ❛ ❝❧♦s❡❞ ♠❛♥✐❢♦❧❞ t❤❛t ❛❞♠✐t ❛ ❝♦♥t✐♥✉♦✉s s♣❧✐tt✐♥❣ ♦❢ t❤❡ t❛♥❣❡♥t ❜✉♥❞❧❡ ✐♥t♦ t✇♦ ✐♥✈❛r✐❛♥t s✉❜❜✉♥❞❧❡s✱ ♦♥❡ ♦❢ t❤❡♠ ❤❛s ❛ ❝♦♥tr❛❝t✐✈❡ ❜❡❤❛✈✐♦r ❛♥❞ t❤❡ ♦t❤❡r✱ ❜❡✐♥❣ ❞♦♠✐♥❛t❡❞ ❜② t❤❡ ✜rst✱ ❡①♣❛♥❞s ❛r❡❛✳ ▼♦r❡♦✈❡r✱ ❛❧❧ s✐♥❣✉❧❛r✐t✐❡s ♦❢ t❤✐s s②st❡♠s ❛r❡ ❤②♣❡r❜♦❧✐❝✳ ❊①❛♠♣❧❡s ♦❢ ❙✐♥❣✉❧❛r ❍②♣❡r❜♦❧✐❝ s❡ts ❛r❡ t❤❡ ▲♦r❡♥③ ❛ttr❛❝t♦r ❛♥❞ t❤❡ ❣❡♦♠❡tr✐❝ ♠♦❞❡❧ ♦❢ t❤✐s ❛ttr❛❝t♦r✳

(11)

■♥tr♦❞✉çã♦

❆ t❡♦r✐❛ ❞❡ ❙✐st❡♠❛s ❉✐♥â♠✐❝♦s t❡♠ ❝♦♠♦ ♦❜❥❡t✐✈♦ ❝♦♠♣r❡❡♥❞❡r ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❛♦ ❧♦♥❣♦ ❞♦ t❡♠♣♦ ❞♦s ❡st❛❞♦s ❞❡ ✉♠ s✐st❡♠❛ ❡♠ ✉♠❛ ✈❛r✐❡❞❛❞❡ ❞✐❢❡r❡♥❝✐á✈❡❧ M ❞❡ ❞✐♠❡♥sã♦ n ❞❛❞♦ ♣♦r ✉♠❛ ❢✉♥çã♦ f :M −→M ♦✉ ✉♠ ✢✉①♦ ϕ :R×M −→M✱ ♦✉ s❡❥❛✱ ❛s ❛❧t❡r❛çõ❡s ❞♦s ❡st❛❞♦s ❞♦ s✐st❡♠❛ ♥❛ ✈❛r✐❡❞❛❞❡ ❝♦♠

♦ ❞❡❝♦rr❡r ❞♦ t❡♠♣♦ t✱ ♦ q✉❛❧ ♣♦❞❡ s❡r ❝♦♥s✐❞❡r❛❞♦ ❞✐s❝r❡t♦ (t Z) ♦✉ ❝♦♥tí♥✉♦ (t R)✳ ❆ ❡✈♦❧✉çã♦ ❞♦s ❡st❛❞♦s ♣♦❞❡♠ ♠♦str❛r ❞❡s❞❡ ✉♠ ❝♦♠♣♦rt❛♠❡♥t♦ ♠✉✐t♦ s✐♠♣❧❡s ❡ ♣♦rt❛♥t♦ ♣r❡✈✐sí✈❡❧✱ ❛té ✉♠ ❝♦♠♣♦rt❛♠❡♥t♦ ❜❛st❛♥t❡ ❝♦♠♣❧✐❝❛❞♦ ❡ ❝♦♠♣❧❡①♦✱ ♦♥❞❡ é ✐♠♣♦ssí✈❡❧ ❢❛③❡r ❛❧❣✉♠ t✐♣♦ ❞❡ ♣r❡✈✐sã♦ ❞❛ ❡✈♦❧✉çã♦ ❞❛s ór❜✐t❛s ❞❡ ✉♠ ♣♦♥t♦ ♦✉ ✉♠ ❝♦♥❥✉♥t♦ ❛ ❧♦♥❣♦ ♣r❛③♦✳

P❡❧❛ ❞✐✜❝✉❧❞❛❞❡ q✉❡ r❡♣r❡s❡♥t❛ ❡st✉❞❛r ❞✐♥â♠✐❝❛s ❡s♣❡❝í✜❝❛s✱ ❜✉s❝♦✉✲s❡ ♣r♦♣r✐❡❞❛❞❡s ❣❡r❛✐s q✉❡ s❛t✐s❢❛③❡♠ ♦s ❙✐st❡♠❛s ❉✐♥â♠✐❝♦s✳ ◆❛s ❞é❝❛❞❛s ✻✵ ❡ ✼✵✱ ❝♦♠ ♦s tr❛❜❛❧❤♦s ❞❡ ❙♠❛❧❡ ❬✷✾❪✱ ❙✐♥❛✐ ❬✷✽❪✱ ❘✉❡❧❧❡ ❬✺❪✱ ❇♦✇❡♥ ❬✹❪✱ ❡♥tr❡ ♦✉tr♦s✱ ❢♦✐ ✐♥tr♦❞✉③✐❞♦ ♦ ❝♦♥❝❡✐t♦ ❞❡ ❈♦♥❥✉♥t♦ ❍✐♣❡r❜ó❧✐❝♦ ❝♦♥❞✉③✐♥❞♦ ❛♦ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ❞❛ ❚❡♦r✐❛ ❍✐♣❡r❜ó❧✐❝❛✱ ❛ q✉❛❧ ♣❡r♠✐t✐✉ ❢❛❝✐❧✐t❛r ♦ ❡st✉❞♦ ❣❡r❛❧ ❞♦s ❙✐st❡♠❛s ❉✐♥â♠✐❝♦s✳ ❊ss❛ t❡♦r✐❛ ❜✉s❝❛ ❡♥t❡♥❞❡r ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❡ ❝♦♥❥✉♥t♦s ❝♦♠♣❛❝t♦s ✐♥✈❛r✐❛♥t❡sΛ♣❛r❛ ✢✉①♦s ❡ ❞✐❢❡♦♠♦r✜s♠♦s ❡♠ ✈❛r✐❡❞❛❞❡s ❝♦♠♣❛❝t❛s ❞❡ ❞✐♠❡♥sã♦ ✜♥✐t❛✱ ♦s q✉❛✐s ❛♣r❡s❡♥t❛♠ ✉♠❛ ❞❡❝♦♠♣♦s✐çã♦ ❝♦♥tí♥✉❛ ❞♦ ❡s♣❛ç♦ t❛♥❣❡♥t❡TpM ❡♠ ❝❛❞❛ ♣♦♥t♦ pΛ✳

◆❛ t❡♥t❛t✐✈❛ ❞❡ ❛♠♣❧✐❛r ♦ ❛❧❝❛♥❝❡ ❞❛ ❚❡♦r✐❛ ❍✐♣❡r❜ó❧✐❝❛✱ ♠♦t✐✈❛❞♦✱ ♣♦r ❡①❡♠♣❧♦✱ ❡♠ ❡♥t❡♥❞❡r ❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦ ❆tr❛t♦r ❞❡ ▲♦r❡♥③✱ ♦ q✉❛❧ é ✉♠ ❡①❡♠♣❧♦ ❝❧áss✐❝♦ ❞❡ ❞✐♥â♠✐❝❛ ♥ã♦ ❤✐♣❡r❜ó❧✐❝❛ ❝♦♠ s✐♥❣✉❧❛r✐❞❛❞❡✱ q✉❡ s✉r❣❡♠ ✈ár✐❛s ♥♦çõ❡s ♠❛✐s ❢r❛❝❛s ❞❡ ❤✐♣❡r❜♦❧✐❝✐❞❛❞❡✱ ❝♦♠♦✱ ♣♦r ❡①❡♠♣❧♦✿

✭✐✮ ❖ ❝♦♥❝❡✐t♦ ❞❡ ❞❡❝♦♠♣♦s✐çã♦ ❞♦♠✐♥❛❞❛✱ q✉❡ ❢♦✐ ✐♥tr♦❞✉③✐❞♦ ♥♦s tr❛❜❛❧❤♦s ❞❡ ▼❛ñé ❬✶✼❪✱ ▲✐❛♦ ❬✶✹❪ ❡ P❧✐ss ❬✷✻❪✱ ♥♦ ❡s❢♦rç♦ ❞❡ ♣r♦✈❛r ❛ ❝♦♥❥❡❝t✉r❛ ❞❡ ❡st❛❜✐❧✐❞❛❞❡ ❞❡ P❛❧✐s✲❙♠❛❧❡ ❬✷✺❪✳

✭✐✐✮ ❆ ♥♦çã♦ ❞❡ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡ P❛r❝✐❛❧ q✉❡ s✉r❣✐✉ ❛ ♣❛rt✐r ❞♦ ❡st✉❞♦ ❞♦s s✐st❡♠❛s q✉❡ r♦❜✉st❛♠❡♥t❡ ♥ã♦ sã♦ ❤✐♣❡r❜ó❧✐❝♦s✱ ❇r✐♥✲P❡s✐♥✱ ❬✻❪✳

✭✐✐✐✮ ❖ ❝♦♥❝❡✐t♦ ❞❡ ✈❛r✐❡❞❛❞❡s ✐♥✈❛r✐❛♥t❡s ❝♦♥❢♦r♠❡ ❛♣r❡s❡♥t❛❞♦ ♣♦r ❍✐rs❝❤✲ P✉❣❤✲❙❤✉❜ ❬✶✵❪✳

✭✐✈✮ ❆ ♥♦çã♦ ❞❡ ❤✐♣❡r❜♦❧✐❝✐❞❛❞❡ s❡❝❝✐♦♥❛❧ ✐♥tr♦❞✉③✐❞❛s ♥♦s tr❛❜❛❧❤♦s ❞❡ ▼❡t③❣❡r✲ ▼♦r❛❧❡s ❬✶✾❪✱ ❇♦♥❛tt✐✲❉í❛③✲❱✐❛♥❛ ❬✸❪ ❡ ❆r❛ú❥♦✲P❛❝í✜❝♦ ❬✶❪✱ ♦s q✉❛✐s ❝❛r❛❝t❡r✐③❛♠✲s❡ ♣♦r ❡①♣❛♥❞✐r ❛ ár❡❛ s♦❜r❡ ❝❛❞❛ s✉❜❡s♣❛ç♦ ❜✐❞✐♠❡♥s✐♦♥❛❧ ♥♦ s✉❜✜❜r❛❞♦ ❝❡♥tr❛❧✳

(12)

❖ ♦❜❥❡t✐✈♦ ❞❡st❡ tr❛❜❛❧❤♦ é ❡st✉❞❛r ♦s ❝♦♥❥✉♥t♦s ❙✐♥❣✉❧❛r❡s ❍✐♣❡r❜ó❧✐❝♦s ❡♠ ✈❛r✐❡❞❛❞❡s tr✐❞✐♠❡♥s✐♦♥❛✐s✳ ❊st❡s ❝♦♥❥✉♥t♦s ❢♦r❛♠ ✐♥tr♦❞✉③✐❞♦s ♣♦r ▼♦r❛❧❡s✲ P❛❝í✜❝♦✲P✉❥❛❧s ❡♠ ✶✾✾✽✱ ❬✷✶❪✱ ❝♦♠♦ ✉♠❛ ❝❛r❛❝t❡r✐③❛çã♦ ❞♦s ❝♦♥❥✉♥t♦s C1 r♦❜✉st♦s tr❛♥s✐t✐✈♦s s✐♥❣✉❧❛r❡s✱ ♦✉ s❡❥❛✱ ✉♠ ❝♦♥❥✉♥t♦ tr❛♥s✐t✐✈♦ Λ q✉❡ ❝♦♥té♠ s✐♥❣✉❧❛r✐❞❛❞❡s ❡ q✉❡ é ❛ ❝♦♥t✐♥✉❛çã♦✱ ❡♠ ✉♠ ✈✐③✐♥❤❛♥ç❛ U ❞❡ Λ ♥❛ ✈❛r✐❡❞❛❞❡✱ ❞❡ t♦❞♦ ❝❛♠♣♦ ✈❡t♦r✐❛❧ C1 ♣ró①✐♠♦ ❞❡ ✉♠ ❝❛♠♣♦ X✳ ❊ss❡s ❝♦♥❥✉♥t♦s ❞❡✜♥❡♠ ✉♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ❝♦♠ t♦❞❛s ❛s s✐♥❣✉❧❛r✐❞❛❞❡s ❤✐♣❡r❜ó❧✐❝❛s ❡ ❛❞♠✐t❡♠ ✉♠❛ ❞❡❝♦♠♣♦s✐çã♦ ✐♥✈❛r✐❛♥t❡ ❞♦♠✐♥❛❞❛✳ ■♥❢♦r♠❛❧♠❡♥t❡✱ ✉♠ ❝♦♥❥✉♥t♦ Λ ❝♦♠♣❛❝t♦ ❡ ✐♥✈❛r✐❛♥t❡ é ❞✐t♦ s❡r ❙✐♥❣✉❧❛r ❍✐♣❡r❜ó❧✐❝♦ s❡ ❡①✐st❡ ✉♠❛ ❞❡❝♦♠♣♦s✐çã♦ ❞♦ ✜❜r❛❞♦ t❛♥❣❡♥t❡ ❡♠ ❞♦✐s s✉❜✜❜r❛❞♦s ✐♥✈❛r✐❛♥t❡s✱ ♦♥❞❡ ✉♠ ❞❡❧❡s t❡♠ ✉♠ ❝♦♠♣♦rt❛♠❡♥t♦ ❝♦♥tr❛t✐✈♦ ❡ ♦ ♦✉tr♦✱ s❡♥❞♦ ❞♦♠✐♥❛❞♦ ♣❡❧♦ ♣r✐♠❡✐r♦✱ ❡①♣❛♥❞❡ ár❡❛✳ ❖ ♣r✐♠❡✐r♦ ❡①❡♠♣❧♦✱ ❞❡♥tr❡ ♦✉tr♦s✱ ❞❡ ❝♦♥❥✉♥t♦ ❙✐♥❣✉❧❛r ❍✐♣❡r❜ó❧✐❝♦ é ♦ ❛tr❛t♦r ❞❡ ▲♦r❡♥③ ❡ s❡✉s ♠♦❞❡❧♦s ❣❡♦♠étr✐❝♦s✳

❉❡s❞❡ ❡♥tã♦ ❡st✉❞♦✉✲s❡ ♠✉✐t♦s ♣r♦❜❧❡♠❛s r❡❧❛❝✐♦♥❛❞♦s ❝♦♠ ❛ ❣❡♥❡r❛❧✐③❛çã♦ ❞❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦s ❝♦♥❥✉♥t♦s ❍✐♣❡r❜ó❧✐❝♦s ❡♠ ✈❛r✐❡❞❛❞❡s ❞❡ ❞✐♠❡♥sã♦ n✳ ❊st❛

❞✐ss❡rt❛çã♦ ♣r❡t❡♥❞❡ ❛❜♦r❞❛r s♦❜r❡ ❡ss❡s ❛s♣❡❝t♦s✱ ♥ã♦ ❞❡ ❢♦r♠❛ ❡①❛✉st✐✈❛✱ ♠❛s ♦ s✉✜❝✐❡♥t❡ ♣❛r❛ ❝♦♠♣r❡❡♥❞❡r ♦s ❙✐st❡♠❛s ❙✐♥❣✉❧❛r❡s ❍✐♣❡r❜ó❧✐❝♦s✳ ❆ ❞✐ss❡rt❛çã♦ ❡st❛ ❞✐✈✐❞✐❞❛ ❝♦♠♦ s❡❣✉❡✳

◆♦ ❝❛♣ít✉❧♦ ✶✱ ❡①✐❜✐♠♦s ❛❧❣✉♥s ❝♦♥❝❡✐t♦s ♣r❡❧✐♠✐♥❛r❡s ♣❛r❛ ❝♦♠♣r❡ssã♦ ❞♦ t❡①t♦✱ ❛❧é♠ ❞❡ ♥♦çõ❡s ❡ ❞❡✜♥✐çõ❡s ❜ás✐❝❛s ❞♦ ❡st✉❞♦ ❞❡ ❙✐st❡♠❛ ❉✐♥â♠✐❝♦✱ t❛♥t♦ ❞✐s❝r❡t♦ ❝♦♠♦ ❝♦♥tí♥✉♦✱ ❡ ❛ r❡❧❛çã♦ ❡♥tr❡ ❡❧❡s✳ ❋✐♥❛❧✐③❛♠♦s ♦ ❝❛♣ít✉❧♦ ❝♦♠ ♦ ❚❡♦r❡♠❛ ❞❡ ❋❧✉①♦ ❚✉❜✉❧❛r q✉❡ ❞✐s❝♦rr❡ s♦❜r❡ ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❧♦❝❛❧ ❞❛s ór❜✐t❛s ❞❡ ✉♠ ♣♦♥t♦ r❡❣✉❧❛r✳

◆♦ ❝❛♣ít✉❧♦ ✷✱ s♦❜r❡ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡✱ ✉t✐❧✐③❛♠♦s ❡s♣❛ç♦s ❞❡ ❇❛♥❛❝❤ ♣❛r❛ ❞❡♠♦♥str❛r ❞❡ ♠❛♥❡✐r❛ ♠❛✐s ❣❡r❛❧ ♦ ❚❡♦r❡♠❛ ❞❡ ●r♦❜♠❛♥✲❍❛rt♠❛♥ ♣❛r❛ ❞✐❢❡♦♠♦r✜s♠♦ ❡ ♣❛r❛ ❝❛♠♣♦s✱ q✉❡ r❡s✉♠✐❞❛♠❡♥t❡ r❡❞✉③ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❝❧❛ss✐✜❝❛r ❛s ❝♦♥❥✉❣❛çõ❡s ❧♦❝❛✐s ❞❡ ❞✐❢❡♦♠♦r✜s♠♦s ❡♠ t♦r♥♦ ❞❡ ♣♦♥t♦ ✜①♦s ❤✐♣❡r❜ó❧✐❝♦s ❡ ❞❡ ❝❛♠♣♦s ❡♠ t♦r♥♦ ❞❡ s✐♥❣✉❧❛r✐❞❛❞❡s ❤✐♣❡r❜ó❧✐❝❛s✱ ❛♦ ❞❡ ❝❧❛ss✐✜❝❛r ❛s ❝♦♥❥✉♥❣❛çõ❡s ❞❡ ✐s♦♠♦r✜s♠♦s ❤✐♣❡r❜ó❧✐❝♦s ❡ ❛ ❞❡ ❝❛♠♣♦s ❧✐♥❡❛r❡s ❝♦♠ s✐♥❣✉❧❛r✐❞❛❞❡s ❤✐♣❡r❜ó❧✐❝❛s✳ ❆✐♥❞❛ ♥❡st❡ ❝❛♣ít✉❧♦ ❞❡✜♥✐♠♦s ❈♦♥❥✉♥t♦s ❍✐♣❡r❜ó❧✐❝♦s ❡ ❡①✐❜✐♠♦s ❡①❡♠♣❧♦s✳ ❊ ♣♦r ✜♠ ❞❡✜♥✐♠♦s ❛s ❱❛r✐❡❞❛❞❡s ■♥✈❛r✐❛♥t❡s ❊stá✈❡❧ ❡ ■♥stá✈❡❧ Ws ❡ Wu ❡ ❡①✐❜✐♠♦s ♦ ❚❡♦r❡♠❛ ❞❛ ❱❛r✐❡❞❛❞❡ ❊stá✈❡❧ q✉❡ ❡♠ s✉♠❛✱ ❛ss❡❣✉r❛ q✉❡ ♣ró①✐♠♦ ❛ s✐♥❣✉❧❛r✐❞❛❞❡s ✭♣♦♥t♦s ✜①♦s✮ ❤✐♣❡r❜ó❧✐❝❛s ♦ s✐st❡♠❛ ♥ã♦ ❧✐♥❡❛r ♣♦ss✉✐ ✈❛r✐❡❞❛❞❡s ❡stá✈❡❧ ❡ ✐♥stá✈❡❧ q✉❡ sã♦ t❛♥❣❡♥t❡s✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ ❛♦s s✉❜✜❜r❛❞♦s ❧✐♥❡❛r❡s ❡stá✈❡❧ Es ❡ ✐♥stá✈❡❧ Eu ❞♦ ✜❜r❛❞♦ t❛♥❣❡♥t❡ ❞❡ M s♦❜r❡Λ

◆♦ ❝❛♣ít✉❧♦ ✸✱ ❛♣r❡s❡♥t❛♠♦s ♦ q✉❡ ❢♦✐ ♦ ♣r✐♠❡✐r♦ ❡①❡♠♣❧♦ ❝♦♥❤❡❝✐❞♦ ❞❡ ✉♠ ❛tr❛t♦r ❡str❛♥❤♦✱ ♥ã♦ ❤✐♣❡r❜ó❧✐❝♦ ❡ ❝❛ót✐❝♦ ♣❛r❛ ✢✉①♦s✱ ✐♥tr♦❞✉③✐❞♦ ♥✉♠ ❢❛♠♦s♦ tr❛❜❛❧❤♦ ❞❡ ❊❞✇❛r❞ ▲♦r❡♥③ ❬✶✻❪ ❡♠ ✶✾✻✸✳ ◆❡st❡ ❝❛♣ít✉❧♦ t❛♠❜é♠ ❡①✐❜✐♠♦s ❛s ♣r♦♣r✐❡❞❛❞❡s ❞❛s ❡q✉❛çõ❡s ❞❡ ▲♦r❡♥③ ❡ ❛ ❝♦♥str✉çã♦ ❞♦ ♠♦❞❡❧♦ ●❡♦♠étr✐❝♦ ❞♦ ❛tr❛t♦r ❞❡ ▲♦r❡♥③✳

❋✐♥❛❧♠❡♥t❡✱ ♥♦ ❝❛♣ít✉❧♦ ✹✱ s♦❜r❡ ❍✐♣❡r❜♦❧✐❝✐❞❛❞❡ ❙✐♥❣✉❧❛r✱ ✉t✐❧✐③❛♠♦s s✉❜❝♦♥❥✉♥t♦s ❝♦♥❡①♦s✱ ❝♦♠♣❛❝t♦s✱ ♥ã♦ tr✐✈✐❛s ❡ ✐♥✈❛r✐❛♥t❡s Λ M✱ ♦♥❞❡ M

é ✈❛r✐❡❞❛❞❡ tr✐❞✐♠❡♥s✐♦♥❛❧ ❝♦♠♣❛❝t❛ ❡ s❡♠ ❜♦r❞♦ ❞♦t❛❞❛ ❞❡ ✉♠❛ t♦♣♦❧♦❣✐❛ Cr

(13)

(14)

❈❛♣ít✉❧♦ ✶

❙✐st❡♠❛s ❉✐♥â♠✐❝♦s

◆❡st❡ ❝❛♣ít✉❧♦ ✈❛♠♦s ❛❜♦r❞❛r ♦s ♣r✐♥❝✐♣❛✐s ❝♦♥❝❡✐t♦s ❡ r❡s✉❧t❛❞♦s q✉❡ s❡rã♦ ✉s❛❞♦s ❛♦ ❧♦♥❣♦ ❞❡st❛ ❞✐ss❡rt❛çã♦✳ P❛r❛ ♠❛✐♦r❡s ❞❡t❛❧❤❡s✱ ❝♦♥s✉❧t❛r ❬✽❪✱ ❬✶✷❪✱ ❬✷✸❪✱ ❬✷✹❪✱ ❬✷✼❪✱ ❡♥tr❡ ♦✉tr♦s✳

✶✳✶ Pr❡❧✐♠✐♥❛r❡s

❉❡✜♥✐çã♦ ✶✳✶✳ ❙❡❥❛ M ✉♠ ❝♦♥❥✉♥t♦✳ ❯♠❛ t♦♣♦❧♦❣✐❛ ❡♠ M é ✉♠❛ ❢❛♠í❧✐❛τ ❞❡

s✉❜❝♦♥❥✉♥t♦s ❞❡ M ❝♦♠ ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✿

✶✳ ∅ ❡ M ♣❡rt❡♥❝❡♠ ❛ τ❀

✷✳ ❆ ✉♥✐ã♦ ❞❡ ✉♠❛ ❢❛♠í❧✐❛ ❛r❜✐trár✐❛ ❞❡ ♠❡♠❜r♦s ❞❡ τ ♣❡rt❡♥❝❡♠ ❛ τ❀

✸✳ ❆ ✐♥t❡rs❡çã♦ ❞❡ ✉♠❛ ❢❛♠í❧✐❛ ✜♥✐t❛ ❞❡ ♠❡♠❜r♦s ❞❡ τ ♣❡rt❡♥❝❡♠ ❛ τ✳

❖s ♠❡♠❜r♦s ❞❡ τ sã♦ ❝❤❛♠❛❞♦s ❞❡ ❛❜❡rt♦s✳ ❖ ♣❛r(M, τ) é ❝❤❛♠❛❞♦ ❊s♣❛ç♦ ❚♦♣ó❧♦❣✐❝♦✳ ❊♠ ❣❡r❛❧✱ ♣♦r s✐♠♣❧✐❝✐❞❛❞❡✱ ❞✐③✲s❡ q✉❡ ▼ é ✉♠ ❡s♣❛ç♦ t♦♣♦❧ó❣✐❝♦✱ s✉❜❡♥t❡♥❞❡♥❞♦✲s❡ ✉♠❛ t♦♣♦❧♦❣✐❛ τ ❛ ❡❧❡ ❛ss♦❝✐❛❞❛✳

❙❡❥❛ M ✉♠ ❡s♣❛ç♦ t♦♣♦❧ó❣✐❝♦✳ ❯♠ ❛t❧❛s A ❡♠ M é ✉♠❛ ❝♦❧❡çã♦

{φi :Ui →U˜i}i∈I ❞❡ ❤♦♠❡♦♠♦r✜s♠♦s✱ ❝❤❛♠❛❞♦s ❝❛rt❛s ❧♦❝❛✐s ♦✉ s✐st❡♠❛s ❞❡ ❝♦♦r❞❡♥❛❞❛s ❧♦❝❛✐s ❞❡ M✱ ♦♥❞❡ Ui ⊂ M ❡ U˜i ⊂ Rm sã♦ ❛❜❡rt♦s ❡ SiIUi = M✳ ❆s ❛♣❧✐❝❛çõ❡s

φj◦φ−i 1 :φi(Ui∩Uj)⊂U˜i →φj(Ui∩Uj)⊂U˜j

❝❤❛♠❛❞❛s ❞❡ ♠✉❞❛♥ç❛s ❞❡ ❝♦♦r❞❡♥❛❞❛s sã♦ ❤♦♠❡♦♠♦r✜s♠♦s✳ ❯♠ ❛t❧❛s é ❞❡ ❝❧❛ss❡

Cr 0r≤ ∞✱ s❡ t♦❞❛s ❛s ♠✉❞❛♥ç❛s ❞❡ ❝♦♦r❞❡♥❛❞❛s ❞♦ ❛t❧❛s sã♦ ❞❡ ❝❧❛ss❡ Cr ❊ ♥❡st❡ ❝❛s♦✱ ❞✐③❡♠♦s q✉❡ M é ❞❡ ❞✐♠❡♥sã♦ m✳

◆❛ ❝♦❧❡çã♦ ❞❡ t♦❞♦s ♦s ❛t❧❛s ❞❡ ❝❧❛ss❡ Cr ❡♠ M t❡♠♦s ✉♠❛ r❡❧❛çã♦ ❞❡ ♦r❞❡♠ ♣❛r❝✐❛❧ ❞❛❞♦ ♣❡❧❛ ✐♥❝❧✉sã♦✿ A ⊂ B s❡ t♦❞❛ ❝❛rt❛ ❧♦❝❛❧ ❞♦ ❛t❧❛s A ❢♦r t❛♠❜é♠

(15)

✺ ✶✳✶✳ P❘❊▲■▼■◆❆❘❊❙

✉♠❛ ❝❛rt❛ ❧♦❝❛❧ ❞❡ B✳ ❯♠ ❛t❧❛s A é ♠❛①✐♠❛❧ s❡ ♣❛r❛ t♦❞♦ ❛t❧❛s B ❞❡ ❝❧❛ss❡ Cr

❝♦♠ A ⊂ B ✈❛❧❡B=A

❯♠ ❛t❧❛s ❞✐③✲s❡ ❧♦❝❛❧♠❡♥t❡ ✜♥✐t♦ s❡ t♦❞♦ ♣♦♥t♦ p ∈ M t❡♠ ✉♠❛ ✈✐③✐♥❤❛♥ç❛

❛❜❡rt❛ q✉❡ ✐♥t❡rs❡❝t❛ s♦♠❡♥t❡ ✉♠ ♥ú♠❡r♦ ✜♥✐t♦ ❞❡ ✈✐③✐♥❤❛♥ç❛s ❞❡M ♥♦ ❛t❧❛s✳

❉❡✜♥✐çã♦ ✶✳✷✳ ❯♠ ❡s♣❛ç♦ t♦♣♦❧ó❣✐❝♦ M é ❍❛✉s❞♦r✛ s❡ ♣❛r❛ ❞♦✐s ♣♦♥t♦s

❞✐st✐♥t♦s p ❡ q ❡♠ M✱ ❡①✐st❡♠ ❛❜❡rt♦s U, V ⊂ M t❛✐s q✉❡ p ∈ U✱ q ∈ V ❡ U V =

❉❡✜♥✐çã♦ ✶✳✸✳ ❯♠ ❡s♣❛ç♦ t♦♣♦❧ó❣✐❝♦ M ♣♦ss✉✐ ❜❛s❡ ❡♥✉♠❡rá✈❡❧ ❞❡ ❛❜❡rt♦s s❡

❡①✐st❡ ✉♠❛ ❝♦❧❡çã♦ ❡♥✉♠❡rá✈❡❧ ❞❡ ❛❜❡rt♦s ❞❡ M t❛❧ q✉❡ t♦❞♦ ❛❜❡rt♦ é ❛ ✉♥✐ã♦ ❞❡

❛❜❡rt♦s ❞❡ss❛ ❝♦❧❡çã♦✳

❉❡✜♥✐çã♦ ✶✳✹✳ ❯♠❛ ❱❛r✐❡❞❛❞❡ ❉✐❢❡r❡♥❝✐á✈❡❧ ❞❡ ❞✐♠❡♥sã♦ m ❡ ❝❧❛ss❡ Cr

r≥1✱ é ✉♠ ♣❛r ♦r❞❡♥❛❞♦ (M,A) ♦♥❞❡ M é ✉♠ ❡s♣❛ç♦ t♦♣♦❧ó❣✐❝♦ ❞❡ ❍❛✉s❞♦r✛

❝♦♠ ❜❛s❡ ❡♥✉♠❡rá✈❡❧ ❡ A é ✉♠ ❛t❧❛s ♠❛①✐♠❛❧✳

❙✉❜❡♥t❡♥❞❡♥❞♦ ♦ ❛t❧❛s ♠❛①✐♠❛❧✱ ❞✐r❡♠♦s q✉❡ M é ✉♠❛ ✈❛r✐❡❞❛❞❡

❞✐❢❡r❡♥❝✐á✈❡❧✱ ♦✉ s✐♠♣❧❡s♠❡♥t❡✱ ✉♠❛ ✈❛r✐❡❞❛❞❡✳

❊①❡♠♣❧♦ ✶✳✺✳ ❖s ❡s♣❛ç♦s ❡✉❝❧✐❞✐❛♥♦s Rm sã♦ ✈❛r✐❡❞❛❞❡s ❞❡ ❞✐♠❡♥sã♦ ♠ ❡

❝❧❛ss❡ C∞✱ ❝♦♠ ❛t❧❛s A ❞❡ ❝❧❛ss❡ C❝♦♥t❡♥❞♦ ♦ ú♥✐❝♦ s✐st❡♠❛ ❞❡ ❝♦♦r❞❡♥❛❞❛s

φ=id:Rm Rm✳

❊①❡♠♣❧♦ ✶✳✻✳ ❆ ❡s❢❡r❛ Sn={xRn+1 :|x|= 1}é ✉♠❛ ✈❛r✐❡❞❛❞❡ ❞❡ ❞✐♠❡♥sã♦ ♥ ❡ ❝❧❛ss❡ C∞ ❞❡ Rn+1✱ ❝♦♠ ❛t❧❛s A = {φ

N;φS}✱ ♦♥❞❡ N = (0, . . . ,0,1) ∈ Sn é ♦ ♣♦❧♦ ♥♦rt❡✱ S = (0, . . . ,0,1) Sn ♦ ♣♦❧♦ s✉❧✱ ❡ φ

N : Sn − {N} → Rn✱

φS :Sn− {S} →Rn ❛s ♣r♦❥❡çõ❡s ❡st❡r❡♦❣rá✜❝❛s r❡❧❛t✐✈❛s ❛♦ ♣♦❧♦ ♥♦rt❡ ❡ ♣♦❧♦ s✉❧ r❡s♣❡❝t✐✈❛♠❡♥t❡✳

❉❡✜♥✐çã♦ ✶✳✼✳ ❙❡❥❛♠ M✱ N ✈❛r✐❡❞❛❞❡s ❞❡ ❝❧❛ss❡ Cr (r 1)✳ ❯♠❛ ❛♣❧✐❝❛çã♦

f : M N é ❞✐t❛ ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦ p M s❡ ❡①✐st❡♠ ❝❛rt❛s ❧♦❝❛✐s φ:U →Rm ❡♠ M✱ ψ :V →Rn ❡♠ N✱ ❝♦♠ p∈U ❡ f(U)⊂V t❛✐s q✉❡

ψfφ−1 :φ(U)Rm −→ψ(V)Rn

é ❞✐❢❡r❡♥❝✐á✈❡❧ ♥♦ ♣♦♥t♦φ(p)✳ ❙❡f :M N ❢♦r ❞✐❢❡r❡♥❝✐á✈❡❧ ❡♠ t♦❞♦s ♦s ♣♦♥t♦s

❞❡ M✱ ❞✐③❡♠♦s q✉❡ f é ❞✐❢❡r❡♥❝✐á✈❡❧✳

❆ ❛♣❧✐❝❛çã♦f :M N é ❞✐t❛ s❡r ❞❡ ❝❧❛ss❡ Ck, (k r) s❡✱ ♣❛r❛ ❝❛❞❛pM ❡①✐st❡♠ ❝❛rt❛s ❧♦❝❛✐s φ : U → Rm ❡♠ M✱ ψ : V → Rn ❡♠ N✱ ❝♦♠ p ∈ U ❡ f(U)V t❛✐s q✉❡ ψfφ−1 :φ(U)ψ(V) é ❞❡ ❝❧❛ss❡ Ck

◆♦ q✉❡ s❡❣✉❡ Ck(M, N) é ♦ ❝♦♥❥✉♥t♦ ❞❛s ❛♣❧✐❝❛çõ❡s ❞❡ ❝❧❛ss❡ Ck, k 0✱ ❞❡

M ❛N✳

(16)

✻ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

❙❡❥❛♠ f ∈ Ck(M, N)✱ Φ = {φi, Ui}i∈Λ ✉♠ ❛t❧❛s ❞❡ M ❧♦❝❛❧♠❡♥t❡ ✜♥✐t♦✱

K ={Ki}i∈Λ✉♠❛ ❝♦❜❡rt✉r❛ ♣♦r ❝♦♠♣❛❝t♦s ❞❡M ❝♦♠Ki ⊂Ui t❛❧ q✉❡f(Ui)⊂Vi✱ Ψ ={ψi, Vi}i∈Λ ✉♠ ❛t❧❛s ❞❡N ❡ ǫ={ǫi}i∈Λ✳ ❉❡✜♥✐♠♦s ♣♦rt❛♥t♦ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❢♦rt❡ ❜ás✐❝❛ ❞❡ f

Nk(f; Ψ,Φ, K, ǫ)

❝♦♠♦ s❡♥❞♦ ♦ ❝♦♥❥✉♥t♦ ❞❛s ❛♣❧✐❝❛çõ❡s g : M → N t❛❧ q✉❡ ♣❛r❛ t♦❞♦ i ∈ Λ✱

g(Ki)⊂Vi ❡

kDr(ψif φ−i 1)(x)−Dr(ψigφ−i 1)(x)k< ǫi ♣❛r❛ t♦❞♦ xϕi(Ki)✱ r= 0, . . . , k✳

✶✳✷ ◆♦t❛çõ❡s ❡ ❉❡✜♥✐çõ❡s

❉❡✜♥✐çã♦ ✶✳✾✳ ❯♠ ❙✐st❡♠❛ ❉✐♥â♠✐❝♦ ❞❡ ❝❧❛ss❡ Cr (r 0) é ✉♠ t❡r♥♦ (M, T, ϕ) ♦♥❞❡ M é ✈❛r✐❡❞❛❞❡ ❞✐❢❡r❡♥❝✐á✈❡❧ ❡ ϕ :T ×M M é ✉♠❛ ❛♣❧✐❝❛çã♦

❞❡ ❝❧❛ss❡ Cr✱ s❛t✐s❢❛③❡♥❞♦ ✶✳ ϕ(0, x) =x✱ xM

✷✳ ϕ(t, ϕ(s, x)) =ϕ(t+s, x)✱ xM ❡ t, s T

❖ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ❞✐③✲s❡ ❞✐s❝r❡t♦ q✉❛♥❞♦ T =Z❡ ❝♦♥tí♥✉♦ q✉❛♥❞♦ T =R✳

❋✐①❛♥❞♦ t ∈ T✱ ϕ ❞❡t❡r♠✐♥❛ ❛ ❛♣❧✐❝❛çã♦ ϕt :M → M✱ ❡ ❛s ♣r♦♣r✐❡❞❛❞❡s ✶ ❡ ✷ ♣♦❞❡♠ s❡r r❡❡s❝r✐t❛s✱ ♣❛r❛ t♦❞♦ x∈M✱

✶✳ ϕ0(x) = x

✷✳ (ϕt◦ϕs)(x) = ϕt+s(x)

❯♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ❞✐s❝r❡t♦ (M,Z, f) ❝♦♥s✐st❡ ❞♦ ❡st✉❞♦ ❞❛s ✐t❡r❛❞❛s ❞❛ ❛♣❧✐❝❛çã♦ f✱ ✐st♦ é✿

f0(x) :=x

f1(x) :=f(x)

f2(x) = f(f(x)) ✳✳✳

fn(x) =f ff . . .f(x)

| {z }

n vezes ❙❡ ❛ ❛♣❧✐❝❛çã♦ ❢♦r ✐♥✈❡rsí✈❡❧ ❡st✉❞❛♠♦s t❛♠❜é♠✿

f−2(x) :=f−1f−1(x)

f−n(x) := f−1◦f−1◦f−1◦. . .◦f−1(x)

| {z }

(17)

✼ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

❊①❡♠♣❧♦ ✶✳✶✵✳ ❙❡❥❛ ♦ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ❞✐s❝r❡t♦ (R,Z, f)✱ f :R R ❞❡✜♥✐❞❛

♣♦r f(x) = x2 +c✱ ♦♥❞❡ ❝ é ✉♠ ♥ú♠❡r♦ r❡❛❧ ✜①♦✳ ◆❡st❡ ❝❛s♦✱ ❞❛❞♦ q✉❛❧q✉❡r ♥ú♠❡r♦ r❡❛❧ x ❡ q✉❛❧q✉❡r N s❡♠♣r❡ ✈❛✐ ❡①✐st✐r ❛ ◆✲és✐♠❛ ✐t❡r❛❞❛ ❞❡ f ❝❛❧❝✉❧❛❞❛

❡♠ x✳ ❚♦♠❡♠♦s✱ ♣♦r ❡①❡♠♣❧♦✱ c= 2✱ x= 0 ❡ N = 3✱ ❞❛í t❡♠♦s✿

f3(0) =f(f(f(0))) =f(f(02+2)) =f(f(2)) =f(22+2) =f(f(6)) = 62+2 = 38.

◆♦s s✐st❡♠❛s ❞✐♥â♠✐❝♦s ❝♦♥tí♥✉♦s (M,R, ϕ)♣r❡❝✐s❛♠♦s ❞♦ ❝♦♥❝❡✐t♦ ❞❡ ❝❛♠♣♦ ✈❡t♦r✐❛❧ ❡ ❞❡ ✜❜r❛❞♦ t❛♥❣❡♥t❡✳

❉❡✜♥✐çã♦ ✶✳✶✶✳ ❙❡❥❛ E ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ ❡ M ✉♠❛ ✈❛r✐❡❞❛❞❡ ❞✐❢❡r❡♥❝✐á✈❡❧✳

❯♠ ❋✐❜r❛❞♦ ❱❡t♦r✐❛❧ s♦❜r❡ M✱ ❞❡ ✜❜r❛ E✱ é ✉♠❛ ✈❛r✐❡❞❛❞❡ F ❥✉♥t♦ ❝♦♠ ✉♠❛

❢✉♥çã♦ ❞✐❢❡r❡♥❝✐á✈❡❧ π:F →M t❛❧ q✉❡✿

✶✳ P❛r❛ t♦❞♦ ♣♦♥t♦ p M✱ ❡①✐st❡ ✉♠ ❛❜❡rt♦ U M ❝♦♠ p U ❡ ✉♠

❞✐❢❡♦♠♦r✜s♠♦ τU :π−1(U)→U ×E t❛❧ q✉❡ πU(τU(x)) =π(x)✳

π−1(U) τU // π

U ×E

πU

y

y

U

✷✳ ❊①✐st❡♠ U ❡ V ❛❜❡rt♦s✱ t❛✐s q✉❡

(U ∩V)×E τU

←−π−1(U ∩V) τV

−→(U ∩V)×E

(x, v) 7−→ (x, τU V x(v))

♦♥❞❡ τU V x :E −→E é ✉♠❛ tr❛♥s❢♦r♠❛çã♦ ❧✐♥❡❛r ✐♥✈❡rsí✈❡❧ ❡ ❛ ❢✉♥çã♦

U V −→Gl(E)

x7−→τU V x

é ❞✐❢❡r❡♥❝✐á✈❡❧✳

(18)

✽ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

❉❡✜♥✐çã♦ ✶✳✶✷✳ ❉❛❞♦ ✉♠ ❋✐❜r❛❞♦ ❱❡t♦r✐❛❧F ❝♦♠πF :F →M✱ ✉♠ ❙✉❜✜❜r❛❞♦ ❱❡t♦r✐❛❧ ❞❡ F é ✉♠ ✜❜r❛❞♦ ✈❡t♦r✐❛❧ E ❝♦♠ πE : E → M✱ ❡♠ q✉❡ E é ✉♠ s✉❜❡s♣❛ç♦ t♦♣♦❧ó❣✐❝♦ ❞❡ F ❡ πE é ❛ r❡str✐çã♦ ❞❡ πF ❛ E✳

❉❡✜♥✐çã♦ ✶✳✶✸✳ ❙❡❥❛ M ❱❛r✐❡❞❛❞❡ ❉✐❢❡r❡♥❝✐á✈❡❧✱ Cr✱ ❡ p M✱ ❞❡✜♥✐♠♦s ♦ ❊s♣❛ç♦ ❚❛♥❣❡♥t❡ ❛ M ❡♠ p ❝♦♠♦ ♦ ❝♦♥❥✉♥t♦

TpM :={[ϕ, v]p :v ∈Rm, ϕ :U ⊆M →Rm ❝❛rt❛ ❝♦♠ p∈U}/∼ ♦♥❞❡ [ϕ, v]p ∼[ψ, w]p s❡ D(ψ◦ϕ−1)ϕ(p)·v =w✳

❊①❡♠♣❧♦ ✶✳✶✹✳ ❙❡❥❛ Rn ✈❛r✐❡❞❛❞❡ ❝♦♠ ❛t❧❛s A ={id : Rn Rn}✳ ❙❡ p Rn✱

TpRn = {[id, v]p : v ∈ Rn} ❢❛r❡♠♦s ✉♠❛ ✐❞❡♥t✐✜❝❛çã♦ ❞❡ [id, v]p ❝♦♠ v ∈ Rn ♣♦rt❛♥t♦ TpRn≃Rn✳

❖❜s❡r✈❛çã♦ ✶✳✶✺✳ ❚❛♠❜é♠ ♣♦❞❡♠♦s ❞❡✜♥✐r ♦ ❊s♣❛ç♦ ❚❛♥❣❡♥t❡ ❛ M ❡♠ p

❝♦♠♦ ♦ ❝♦♥❥✉♥t♦

TpM :={γ : (−ǫ, ǫ)→Rm é ❝✉r✈❛ Ck, k ≥1, t❛❧ q✉❡ γ(0) =p}/∼

♦♥❞❡ γ1 ∼γ2 s❡ ❡①✐st❡ ✉♠❛ ❝❛rt❛ ϕ :U ⊆M →U˜ ⊆Rm✱ ❝♦♠p∈U ❡ 0∈U˜✱ t❛❧ q✉❡ (ϕγ1)′(0) = (ϕ◦γ2)′(0)✳

❆s ❞❡✜♥✐çõ❡s ✶✳✶✸ ❡ ✶✳✶✺ sã♦ ❡q✉✐✈❛❧❡♥t❡s ❥á q✉❡ ❛ ❛♣❧✐❝❛çã♦

H :TpM −→TpM

[γ]7−→[ϕ,(ϕ◦γ)′(0)]

é ✉♠❛ ❜✐❥❡çã♦✳

❉❡ ❢❛t♦✱ s❡❥❛♠ ϕ : U ⊂ M → Rm ✉♠❛ ❝❛rt❛ ❧♦❝❛❧✱ p ∈ U ❡ [γ], [α]∈ TpM ❡♥tã♦

✭✐✮ H ❡stá ❜❡♠ ❞❡✜♥✐❞❛✿

[γ] = [α]⇒H([γ]) = [ϕ,(ϕ◦γ)′(0)]p = [ϕ,(ϕ◦α)′(0)]p =H([α]).

✭✐✐✮ H é ✐♥❥❡t✐✈❛✿

H([γ]) =H([α])[ϕ,(ϕγ)′(0)]p = [ϕ,(ϕ◦α)′(0)]p

⇒D(ϕϕ−1)·(ϕγ)(0) = (ϕα)(0)

⇒(ϕ◦γ)′(0) = (ϕ◦α)′(0)

⇒[γ] = [α].

✭✐✐✐✮ H é s♦❜r❡❥❡t✐✈❛✿

❙❡❥❛ [ϕ, v]p ∈TpM ❡♥tã♦ [ϕ−1(ϕ(p) +tv)]∈ TpM é t❛❧ q✉❡

(19)

✾ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

❉❡✜♥✐çã♦ ✶✳✶✻✳ ❙❡❥❛ M ✈❛r✐❡❞❛❞❡ ❞✐❢❡r❡♥❝✐á✈❡❧✳ ❉❡♥♦t❛r❡♠♦s ♣♦r T M ❛ ✉♥✐ã♦

❞✐s❥✉♥t❛ ❞❡ t♦❞♦s ♦s ♣❧❛♥♦s t❛♥❣❡♥t❡s ❛ M✱ ♦✉ s❡❥❛✱

T M := [

p∈M

TpM

❡ss❡ ❝♦♥❥✉♥t♦ é ❝❤❛♠❛❞♦ ❋✐❜r❛❞♦ ❚❛♥❣❡♥t❡ ❛ss♦❝✐❛❞♦ à ✈❛r✐❡❞❛❞❡ M✳

▼♦str❛✲s❡ q✉❡ ♦ ❋✐❜r❛❞♦ ❚❛♥❣❡♥t❡ é ✉♠ ❋✐❜r❛❞♦ ❱❡t♦r✐❛❧ ❞❡ ✜❜r❛ Rm✳ P❛r❛

♠❛✐♦r❡s ❞❡t❛❧❤❡s s♦❜r❡ ❡st❡ ❢❛t♦ ❝♦♥s✉❧t❛r ❬✶✸❪✳

❉❡✜♥✐çã♦ ✶✳✶✼✳ ❯♠ ❈❛♠♣♦ ✈❡t♦r✐❛❧ ❞❡ ❝❧❛ss❡ Cr (r 1) é ✉♠❛ ❛♣❧✐❝❛çã♦

X : M T M ❞❡ ❝❧❛ss❡ Cr✱ q✉❡ ❛ ❝❛❞❛ ♣♦♥t♦ p M✱ ❛ss♦❝✐❛ ✉♠ ✈❡t♦r

X(p)TpM✳

❉❡♥♦t❛r❡♠♦s Xr(M) ♦ ❝♦♥❥✉♥t♦ ❞♦s ❝❛♠♣♦s ✈❡t♦r✐❛✐s ❞❡ ❝❧❛ss❡Cr ❡♠ M

❖❜s❡r✈❛çã♦ ✶✳✶✽✳ P♦r ❛❜✉s♦ ❞❡ ♥♦t❛çã♦✱ s❡ X :U Rm TRm ∼=Rm×Rm✱

❞❡♥♦t❛r❡♠♦s ♣♦r X :U ⊂Rm Rm✳

❊①❡♠♣❧♦ ✶✳✶✾✳ ❆ ❛♣❧✐❝❛çã♦ X : R2 R2 ❞❛❞❛ ♣♦r X(x, y) = (y, x) é ✉♠ ❝❛♠♣♦ ✈❡t♦r✐❛❧ ❞❡ ❝❧❛ss❡ C∞✱ ❥á q✉❡ ♣❛r❛ ❝❛❞❛ p = (x, y) R2 t❡♠♦s q✉❡

X(p) = (y, x)TpR2 =R2✳

❉❛❞♦ ✉♠ ❝❛♠♣♦ ✈❡t♦r✐❛❧ X ❞❡ ❝❧❛ss❡ Cr (r 1) ❞❡✜♥✐❞♦ ❡♠ ✉♠❛ ✈❛r✐❡❞❛❞❡

M✱ ❡①✐st❡ ✉♠ ú♥✐❝♦ ✢✉①♦ϕt❞❡✜♥✐❞♦ ♣❛r❛ t♦❞♦t∈R❛ss♦❝✐❛❞♦ ❛♦ ❝❛♠♣♦✱ s♦❧✉çã♦ ❞❛ ❡q✉❛çã♦ ❞✐❢❡r❡♥❝✐❛❧ dϕt

dt (x) =X(x) s✉❥❡✐t❛ à ❝♦♥❞✐çã♦ ✐♥✐❝✐❛❧ x(t0) =x0✳

❉❡✜♥✐çã♦ ✶✳✷✵✳ ❯♠❛ ❝✉r✈❛ ✐♥t❡❣r❛❧ ❞❡ ✉♠ ❝❛♠♣♦ X : U Rn Rn q✉❡

♣❛ss❛ ♣❡❧♦ ♣♦♥t♦ x0 ♥♦ t❡♠♣♦ t0 é ✉♠❛ ❢✉♥çã♦ x:I ⊂R→U t❛❧ q✉❡ x(t0) =x0 ❡ x˙(t) =X(x(t)) ♣❛r❛ t♦❞♦ t∈I✳ ✭❖♥❞❡ x˙ = dx

dt✮✳

❉❡✜♥✐çã♦ ✶✳✷✶✳ ❯♠❛ ór❜✐t❛ ❞❡ ✉♠ ♣♦♥t♦ q M é ♦ ❝♦♥❥✉♥t♦

O(q) = {ϕt(q) :t∈T}.

❋✐❣✉r❛ ✶✳✷✿ Ór❜✐t❛s ♣❡r✐ó❞✐❝❛s (M,R, ϕ)❡ (M,Z, f)✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✳ ◗✉❛♥❞♦ T =R ❛s ór❜✐t❛s sã♦ ❝✉r✈❛s ❡♠ M✱ ❡♥q✉❛♥t♦ q✉❡ ♣❛r❛ T =Z ✉♠❛

(20)

✶✵ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

❉❡✜♥✐çã♦ ✶✳✷✷✳ ❯♠ ♣♦♥t♦ p é ✉♠ ♣♦♥t♦ ✜①♦ s❡ ϕt(p) = p✱ ♣❛r❛ t♦❞♦ t ∈ T✱ ✭❡q✉✐✈❛❧❡♥t❡♠❡♥t❡ O(p) = {p}✮✳

●❡r❛❧♠❡♥t❡✱ ❡♠ s✐st❡♠❛s ❞✐♥â♠✐❝♦s ❝♦♥tí♥✉♦s✱ p ∈ M é ❝❤❛♠❛❞♦

s✐♥❣✉❧❛r✐❞❛❞❡ ♣❛r❛ ♦ ❝❛♠♣♦ X s❡ X(p) = 0✱ ♦✉ s❡❥❛✱ s❡ é ♣♦♥t♦ ✜①♦ ♣❛r❛ ♦ ✢✉①♦ϕt✳ ❈❛s♦ ❝♦♥trár✐♦✱ p é ❞✐t♦ ♣♦♥t♦ r❡❣✉❧❛r✳

❉❡♥♦t❛r❡♠♦s ♣♦r Sing(X) ♦ ❝♦♥❥✉♥t♦ ❞❛s s✐♥❣✉❧❛r✐❞❛❞❡s ❞❡ X✳

❉❡✜♥✐çã♦ ✶✳✷✸✳ ❯♠ ♣♦♥t♦pM é ❝❤❛♠❛❞♦ ♣♦♥t♦ ♣❡r✐ó❞✐❝♦ ♣❛r❛ ✉♠ ❙✐st❡♠❛

❉✐♥â♠✐❝♦ (M, T, ϕ) s❡ ❡①✐st❡ t′ > 0 t❛❧ q✉❡ ϕ

t′(p) = p ❡ ϕt(p) 6= p✱ ♣❛r❛ t♦❞♦

0< t < t′✳ ◆❡st❡ ❝❛s♦✱ té ❝❤❛♠❛❞♦ ❞❡ ♣❡rí♦❞♦✳

❆ ór❜✐t❛ ❞❡ ✉♠ ♣♦♥t♦ ♣❡r✐ó❞✐❝♦ é ❝❤❛♠❛❞❛ ❞❡ ór❜✐t❛ ♣❡r✐ó❞✐❝❛✳ ❯s❛r❡♠♦s

P er(ϕ)♣❛r❛ ✐♥❞✐❝❛r ♦ ❝♦♥❥✉♥t♦ ❞♦s ♣♦♥t♦s ♣❡r✐ó❞✐❝♦s✳

❯♠❛ ór❜✐t❛ ❢❡❝❤❛❞❛ é ✉♠❛ ór❜✐t❛ q✉❡ é ✉♠ ❝♦♥❥✉♥t♦ ❢❡❝❤❛❞♦✳ ❆ss✐♠ ❛s ór❜✐t❛s ❢❡❝❤❛❞❛s ❡♠ ❝♦♥❥✉♥t♦s ❝♦♠♣❛❝t♦s sã♦ ❛s s✐♥❣✉❧❛r✐❞❛❞❡s ❡ ❛s ór❜✐t❛s ♣❡r✐ó❞✐❝❛s✳ ❚❛♠❜é♠ ❝❤❛♠❛r❡♠♦s ❡❧❡♠❡♥t♦ ❝rít✐❝♦ ❞❡ ✉♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ✉♠ ♣♦♥t♦ ✜①♦✱ ✉♠❛ s✐♥❣✉❧❛r✐❞❛❞❡✱ ♦✉ ✉♠❛ ór❜✐t❛ ♣❡r✐ó❞✐❝❛✳

❊♠ ✉♠❛ ór❜✐t❛ ♣♦❞❡♠♦s ♣r♦❝✉r❛r ♦s s❡✉s ♣♦♥t♦s ❞❡ ❛❝✉♠✉❧❛çã♦✱ ♦✉ s❡❥❛✱ ♦s ♣♦♥t♦s ❡♠ t♦r♥♦ ❞♦s q✉❛✐s ❛ ór❜✐t❛ ✐rá ♣❛ss❛r ✉♠❛ ✐♥✜♥✐❞❛❞❡ ❞❡ ✈❡③❡s✳ P❛r❛ ✐ss♦✱ s❡❣✉❡ ♦ s❡❣✉✐♥t❡ ❝♦♥❝❡✐t♦✳

❉❡✜♥✐çã♦ ✶✳✷✹✳ ❉❛❞♦ p M ❞❡✜♥✐♠♦s ♦ ω✲❧✐♠✐t❡ ❡ ♦ α✲❧✐♠✐t❡ ❞❡ p✱

r❡s♣❡❝t✐✈❛♠❡♥t❡✱ ❝♦♠♦ ♦s ❝♦♥❥✉♥t♦s

ω(p) ={qM : lim tn→∞

ϕtn(p) =q, ♣❛r❛ ❛❧❣✉♠❛ s❡q✉ê♥❝✐❛ tn}

α(p) ={qM : lim tn→−∞

ϕtn(p) =q, ♣❛r❛ ❛❧❣✉♠❛ s❡q✉ê♥❝✐❛ tn}

❊①❡♠♣❧♦ ✶✳✷✺✳ ❖ ❝ír❝✉❧♦ S1 é ♦ ❝♦♥❥✉♥t♦ ❞♦s ♣♦♥t♦s ❞♦ ♣❧❛♥♦ ❝♦♠♣❧❡①♦ C ❞❛ ❢♦r♠❛ eix2π x R✳ ❖❜s❡r✈❛♠♦s q✉❡ s❡ k é ✉♠ ♥ú♠❡r♦ ✐♥t❡✐r♦✱ ❡♥tã♦ eix2π

ei(x+k)2π r❡♣r❡s❡♥t❛♠ ♦ ♠❡s♠♦ ♣♦♥t♦ ♥♦ ❝ír❝✉❧♦✳ ❯♠❛ r♦t❛çã♦ ❞❡ â♥❣✉❧♦ 2π é ❛ ❛♣❧✐❝❛çã♦

Rσ :S1 −→S1 ❞❛❞❛ ♣♦r

Rσ(eix2π) = ei(x+σ)2π

◆♦t❛♠♦s q✉❡ Rσ(eix2π) é ♦ ♣r✐♠❡✐r♦ ✐t❡r❛❞♦✱ ♦ s❡❣✉♥❞♦ é R2

σ(eix2π) = Rσ(Rσ(eix2π)) =ei(x+2σ)2π✳ ❙✉❝❡ss✐✈❛♠❡♥t❡✱ ♦ ♠✲és✐♠♦ ✐t❡r❛❞♦ é

Rm

σ (eix2π) =Rσ(Rσm−1(eix2π)) = ei(x+mσ)2π ❆ ór❜✐t❛ O(eix2π) é ♣❡r✐ó❞✐❝❛ s❡

Rm

σ (eix2π) = ei(x+mσ)2π =eix2π ⇔mσ =k ∈Z⇔σ∈Q ❖❜s❡r✈❛♠♦s q✉❡ s❡ σ= p

q✱ ♣ ❡ q ♣r✐♠♦s ❡♥tr❡ s✐✱ ❡♥tã♦ t♦❞♦s ♦s ♣♦♥t♦s ❞❡ S

(21)

✶✶ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

♣♦ré♠✱ ♥❡st❡ ❝❛s♦✱ ❛ ór❜✐t❛ ❞❡ q✉❛❧q✉❡r ♣♦♥t♦ é ❞❡♥s❛ ❡♠ S1✳ ❖s ❝♦♥❥✉♥t♦s

ω✲❧✐♠✐t❡ ❡ α✲❧✐♠✐t❡ sã♦

ω(eix2π) =α(eix2π) =S1, se σ ∈R\Q

ω(eix2π) = α(eix2π) = O(eix2π), se σQ.

❉❡✜♥✐çã♦ ✶✳✷✻✳ ❙❡❥❛ ✉♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ (M, T, ϕ)✳ ❯♠ ♣♦♥t♦ p é ❝❤❛♠❛❞♦

♥ã♦ ❡rr❛♥t❡ ♣❛r❛ ϕ✱ s❡ ♣❛r❛ t♦❞❛ ✈✐③✐♥❤❛♥ç❛ U✱ ❝♦♥t❡♥❞♦ p✱ ❡ ♣❛r❛ t♦❞♦ s >0✱ ❡①✐st❡ t > s t❛❧ q✉❡

ϕt(U)∩U 6=∅.

❯s❛r❡♠♦s ❛ ♥♦t❛çã♦Ω(ϕ)✭❛s ✈❡③❡s✱Ω(X)✮ ♣❛r❛ ✐♥❞✐❝❛r ♦ ❝♦♥❥✉♥t♦ ❞♦s ♣♦♥t♦s ♥ã♦ ❡rr❛♥t❡s ❞❡ ϕ✱ ✭♦✉ ❞♦ ❝❛♠♣♦X✮✳ ❈❧❛r❛♠❡♥t❡ P er(ϕ)Ω(ϕ)✳

Pr♦♣♦s✐çã♦ ✶✳✷✼✳ ❖ ❝♦♥❥✉♥t♦ Ω(ϕ) é ❢❡❝❤❛❞♦✱ ϕ(Ω(ϕ)) ⊆ Ω(ϕ) ❡ ❛❧é♠ ❞✐ss♦✱ ❝♦♥té♠ ω✲❧✐♠✐t❡ ❡ α✲❧✐♠✐t❡ ❞❡ t♦❞♦s ♦s ♣♦♥t♦s ❞❡ M✳

❉❡♠♦♥str❛çã♦✳ ❙❡❥❛ (xn)n∈N ✉♠❛ s❡q✉ê♥❝✐❛ ❡♠ Ω(ϕ) ❝♦♠ xn → x ∈ M✱ ❞❛❞❛ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❛❜❡rt❛ U ❞❡ ①✱ ❡①✐st❡ n0 ∈ N t❛❧ q✉❡ xn ∈ U✱ ∀n ≥ n0✳ ❊♥tã♦ ❝♦♠♦xn∈U t❡♠♦s q✉❡ ❡①✐st❡Vxn ⊂U ❛❜❡rt♦ t❛❧ q✉❡xn∈Vxn ♣❛r❛ ❝❛❞❛n > n0✳

❋✐①❡ n > n0✱ ❝♦♠♦xn ∈Ω(ϕ)t❡♠♦s q✉❡ ❡①✐st❡m≥1 t❛❧ q✉❡ϕm(Vxn)∩Vxn 6=∅✱

❧♦❣♦ ϕm(U)∩U =6 ∅ ❡ ♣♦rt❛♥t♦ x∈Ω(ϕ)✳

P♦r ♦✉tr♦ ❧❛❞♦ t❡♠♦s q✉❡ s❡ x ∈ ϕ(Ω(ϕ)) ❡♥tã♦ x = ϕ(y) ❝♦♠ y ∈ Ω(ϕ)✳ ❙❡❥❛ V ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ ①✱ t❡♠♦s q✉❡ ϕ−1(V) é ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ ②✱ ❧♦❣♦ ❡①✐st❡ n >0 t❛❧ q✉❡ ϕn(ϕ−1(V))∩ϕ−1(V)6= ∅ ❞♦♥❞❡ ϕn(V)∩V 6=∅✳ P♦rt❛♥t♦

x∈Ω(ϕ)✱ ♦✉ s❡❥❛✱ ϕ(Ω(ϕ))⊆Ω(ϕ)✳

❋✐♥❛❧♠❡♥t❡✱ s❡❥❛ x = limnk→∞ϕnk(y) ∈ U✱ ❝♦♠ ❯ ❛❜❡rt♦✳ ❙✉♣♦♥❤❛♠♦s q✉❡

nk é ✉♠❛ s❡q✉ê♥❝✐❛ ❝r❡s❝❡♥t❡✳ ❊♥tã♦ ϕnk(y) ∈U ♣❛r❛ ❦ s✉✜❝✐❡♥t❡♠❡♥t❡ ❣r❛♥❞❡

❡ ϕnk+1(y) ∈ U ♣❡❧♦ q✉❡ U ∩ϕnk+1−nk(U) 6= ∅✱ ♦✉ s❡❥❛✱ ♦ ω✲❧✐♠✐t❡ ❞♦s ♣♦♥t♦s

❞❡ ▼ ❡stã♦ ❡♠ Ω(ϕ)✳ ❖ ❛r❣✉♠❡♥t♦ ♣❛r❛ ♦s ♣♦♥t♦s α✲❧✐♠✐t❡ é ❝♦♠♣❧❡t❛♠❡♥t❡

❛♥á❧♦❣♦✳

❉❡✜♥✐çã♦ ✶✳✷✽✳ ❖s s✐st❡♠❛s ❞✐♥â♠✐❝♦s (M, T, ϕ) ❡ (N, T, ψ) sã♦ t♦♣♦❧♦❣✐❝❛♠❡♥t❡ ❝♦♥❥✉❣❛❞♦s s❡ ❡①✐st❡ ✉♠ ❤♦♠❡♦♠♦✜s♠♦ h : M N

t❛❧ q✉❡

h◦ϕ=ψ◦h

h é ❝❤❛♠❛❞❛ ❝♦♥❥✉❣❛çã♦ t♦♣♦❧ó❣✐❝❛ ❡♥tr❡ ϕ ❡ ψ✳

❊♠ ♦✉tr❛s ♣❛❧❛✈r❛s✱ (M, T, ϕ) ❡ (N, T, ψ) sã♦ t♦♣♦❧♦❣✐❝❛♠❡♥t❡ ❝♦♥❥✉❣❛❞♦s s❡ ♦ ❞✐❛❣r❛♠❛ ❛❜❛✐①♦ é ❝♦♠✉t❛t✐✈♦

M ϕ // h

M

h

N

ψ

/

(22)

✶✷ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

❊①❡♠♣❧♦ ✶✳✷✾✳ ❙❡❥❛♠ ♦s s✐st❡♠❛s ❞✐♥â♠✐❝♦s (R2,R, X) ❡ (R2,R, Y) ❞❛❞♦s ♣♦r

X(x, y) = (x,y) ❡ Y(x, y) = (x,y+x3)✱ ❡ s❡❥❛ h : R2 R2 ❞❡✜♥✐❞❛ ♣♦r

h(x, y) =

x, y+x 3

4

❛ ❝♦♥❥✉❣❛çã♦ t♦♣♦❧ó❣✐❝❛ ❡♥tr❡ ♦s ❝❛♠♣♦s ❳ ❡ ❨✳ ❉❡ ❢❛t♦✱ ♦s ✢✉①♦s ❞❡ ❳ ❡ ❨ sã♦ ❞❛❞♦s✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ ♣♦r✿

ϕt(a, b) = (aet, be−t)

ψt(a, b) =

aet,

b− a

3

4

e−t+ a 3

4 e 3t

❆ss✐♠✱

(h◦ϕt)(a, b) =h(aet, be−t) =

aet, be−t+ a 3

4e 3t

P♦r ♦✉tr♦ ❧❛❞♦✱

(ψt◦h)(a, b) =ψt

a, b+a 3

4

=

aet,

b+ a 3

4 −

a3 4

e−t+ a 3 4e 3t =

aet, be−t+a 3

4e 3t

.

❖❜s❡r✈❛çã♦ ✶✳✸✵✳ ❖s s✐st❡♠❛s ❞✐♥â♠✐❝♦s (M, T, ϕ) ❡ (N, T, ψ) s❡rã♦✿

✶✳ Cr❝♦♥❥✉❣❛❞♦s✱ r 1✱ s❡ ❡①✐st❡ ✉♠ ❞✐❢❡♦♠♦r✜s♠♦ h : M N ❞❡ ❝❧❛ss❡

Cr t❛❧ q✉❡ hϕ =ψ h

✷✳ ❙❡♠✐❝♦♥❥✉❣❛❞♦s✱ s❡ ❡①✐st❡ ✉♠❛ ❛♣❧✐❝❛çã♦ s♦❜r❡❥❡t♦r❛ h : M → N ❞❡

❝❧❛ss❡ Cr t❛❧ q✉❡ hϕ=ψh

❉❡✜♥✐çã♦ ✶✳✸✶✳ ❙❡❥❛♠ ϕ ❡ ψ ❡♠ Cr(M, N)✳ ❆ Cr❞✐stâ♥❝✐❛ ❡♥tr❡ ϕψ ❞❡♥♦t❛❞❛ dr(ϕ, ψ) é ❞❛❞❛ ♣♦r

dr(ϕ, ψ) = sup x∈M

(|ϕ(x)ψ(x)|,|ϕ(1)(x)ψ(1)(x)|, . . . ,|ϕ(r)(x)ψ(r)(x)|)

❙❡♥❞♦ ϕ(r) é ❛ r✲és✐♠❛ ❞❡r✐✈❛❞❛ ❞❡ϕ

■♥t✉✐t✐✈❛♠❡♥t❡✱ ❞✉❛s ❛♣❧✐❝❛çõ❡s sã♦ Cr♣ró①✐♠❛s s❡ ❡❧❛✱ ❜❡♠ ❝♦♠♦ s✉❛s r ♣r✐♠❡✐r❛s ❞❡r✐✈❛❞❛s✱ ❞✐❢❡r❡♠ ♣♦r ❛♣❡♥❛s ✉♠❛ q✉❛♥t✐❞❛❞❡ ♣❡q✉❡♥❛✳

❊①❡♠♣❧♦ ✶✳✸✷✳ ❙❡❥❛♠ (J,Z, f) ❡ (J,Z, g) ❞♦✐s s✐st❡♠❛s ❞✐♥â♠✐❝♦s✱ J = [0,1]

R✱ ❞❡✜♥✐❞♦s ♣♦rf(x) = 2x❡g(x) = (2+ǫ)x✳ ❊❧❡s sã♦Crǫ❞✐st❛♥t❡s ♥♦ ✐♥t❡r✈❛❧♦

J✱ ♣♦✐s

dr(f, g) = sup x∈J

(|f(x)g(x)|,|f(1)(x)g(1)(x)|, . . . ,|f(r)(x)g(r)(x)|)

= sup x∈J

(23)

✶✸ ✶✳✷✳ ◆❖❚❆➬Õ❊❙ ❊ ❉❊❋■◆■➬Õ❊❙

❉❡✜♥✐çã♦ ✶✳✸✸✳ ❯♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ (M, T, ϕ) é Cr❡str✉t✉r❛❧♠❡♥t❡ ❡stá✈❡❧✱ s❡ ❡①✐st❡♠ (M, T, ψ) ❡ ǫ > 0 t❛❧ q✉❡ ϕ ❡ ψ sã♦ Crǫ♣ró①✐♠♦s✱ ♦✉ s❡❥❛✱ dr(ϕ, ψ)< ǫ✳ ❆❧é♠ ❞✐ss♦✱ ϕ é t♦♣♦❧♦❣✐❝❛♠❡♥t❡ ❝♦♥❥✉❣❛❞❛ ❛ ψ✳

❊♠ r❡s✉♠♦✱ ✉♠❛ ❛♣❧✐❝❛çã♦ ϕ é ❡str✉t✉r❛❧♠❡♥t❡ ❡stá✈❡❧ s❡ ❝❛❞❛ ❛♣❧✐❝❛çã♦ ✏♥❛s

♣r♦①✐♠✐❞❛❞❡s✑ é t♦♣♦❧♦❣✐❝❛♠❡♥t❡ ❝♦♥❥✉❣❛❞❛ ❛ ϕ ❡ ♣♦r ✐ss♦ t❡♠ ❡ss❡♥❝✐❛❧♠❡♥t❡ ❛

♠❡s♠❛ ❞✐♥â♠✐❝❛✳

❉❡✜♥✐çã♦ ✶✳✸✹✳ ❯♠ ❝♦♥❥✉♥t♦ ΛM ❝♦♠♣❛❝t♦ é

✶✳ ■♥✈❛r✐❛♥t❡ ♣♦r ϕt✱ s❡ ϕt(Λ) = Λ,∀t∈T❀

✷✳ ❚r❛♥s✐t✐✈♦✱ s❡ é ✐♥✈❛r✐❛♥t❡ ❡ Λ =ω(p) ♣❛r❛ ❛❧❣✉♠ pM❀

✸✳ ◆ã♦ tr✐✈✐❛❧✱ s❡ Λ ♥ã♦ é ✉♠❛ ór❜✐t❛ ❢❡❝❤❛❞❛ ❞❡ X❀

✹✳ ■♥✈❛r✐❛♥t❡ ▼❛①✐♠❛❧✱ s❡ ❡①✐st❡ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❝♦♠♣❛❝t❛ U ❞❡ Λ t❛❧ q✉❡ Λ = \

t∈T

ϕt(U)

U é ❝❤❛♠❛❞♦ ❜❧♦❝♦ ✐s♦❧❛♥t❡❀

✺✳ ❙✉♠✐❞♦✉r♦✱ s❡ é ✐♥✈❛r✐❛♥t❡ ♠❛①✐♠❛❧ ❡ t❡♠ ✉♠ ❜❧♦❝♦ ✐s♦❧❛♥t❡ ♣♦s✐t✐✈❛♠❡♥t❡ ✐♥✈❛r✐❛♥t❡ U✱ ✐st♦ é✱

ϕt(U)⊂U,∀t >0

✻✳ ❆tr❛t♦r✱ s❡ é s✉♠✐❞♦✉r♦ tr❛♥s✐t✐✈♦❀

✼✳ ❙✐♥❣✉❧❛r✱ s❡ ❝♦♥té♠✱ ♣❡❧♦ ♠❡♥♦s✱ ✉♠❛ s✐♥❣✉❧❛r✐❞❛❞❡✳

❉❡✜♥✐çã♦ ✶✳✸✺✳ ❯♠ ❛tr❛t♦rΛ✱ ❞❡ ✉♠ ❝❛♠♣♦ ✈❡t♦r✐❛❧X ∈Xr(M)✱ éCrr♦❜✉st♦ s❡ ❡stá ❝♦♥t✐❞♦ ♥✉♠ ❜❧♦❝♦ ✐s♦❧❛♥t❡ U✱ t❛❧ q✉❡

ΛY = \

t≥0

ψt(U)

é ✉♠ ❛tr❛t♦r ♣❛r❛ ❝❛❞❛Y Cr♣ró①✐♠♦ ❞❡X✳ ❖♥❞❡ ψ

t é ♦ ✢✉①♦ ❣❡r❛❞♦ ♣❡❧♦ ❝❛♠♣♦

Y✳

❖✉ s❡❥❛✱ s❡ ♠♦❞✐✜❝❛r♠♦s ❧✐❣❡✐r❛♠❡♥t❡ ♦ ✢✉①♦✱ ❝♦♥t✐♥✉❛ ❡①✐st✐♥❞♦ ✉♠ ❛tr❛t♦r✳ ❉❡✜♥✐çã♦ ✶✳✸✻✳ ❯♠ ❝♦♥❥✉♥t♦ ❝♦♠♣❛❝t♦ tr❛♥s✐t✐✈♦ Λ ❞❡ X é Crr♦❜✉st♦ tr❛♥s✐t✐✈♦ s❡ ❡①✐st❡ ✉♠ ❜❧♦❝♦ ✐s♦❧❛♥t❡ U ❞❡ Λ t❛❧ q✉❡

ΛY = \

t∈R

ψt(U)

é tr❛♥s✐t✐✈♦ ♣❛r❛ t♦❞♦ Y Cr♣ró①✐♠♦ ❞❡ X

(24)

✶✹ ✶✳✸✳ ❘❊▲❆➬➹❖ ❊◆❚❘❊ ❙■❙❚❊▼❆❙ ❈❖◆❚❮◆❯❖❙ ❊ ❉■❙❈❘❊❚❖❙

✶✳✸ ❘❡❧❛çã♦ ❡♥tr❡ ❙✐st❡♠❛s ❈♦♥tí♥✉♦s ❡ ❉✐s❝r❡t♦s

P♦❞❡♠♦s tr❛♥s❢♦r♠❛r ✉♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ❝♦♥tí♥✉♦(M,R, ϕ)❡♠ ✉♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ❞✐s❝r❡t♦ (M,Z, f)✱ ♣❡❧♦ ♠❡♥♦s ❞❡ ❞✉❛s ♠❛♥❡✐r❛s✿

✶✳ ❉❛❞♦ t0 ∈R✱ ✜①♦✱ ❡ ❝♦♥s✐❞❡r❛♥❞♦f =ϕt0✱ t❡♠♦s q✉❡✱ ♣❛r❛ n∈Z

fn = (ϕt0)n =ϕnt0.

✷✳ ❙❡❥❛♠ ϕt : M → M ✉♠ ✢✉①♦ ❡ O ✉♠❛ ór❜✐t❛ ♣❡r✐ó❞✐❝❛ ❞❡ ♣❡rí♦❞♦

τ0 > 0✳ ❙❡❥❛ S ⊆ M ✉♠❛ s✉❜✈❛r✐❡❞❛❞❡ ❞❡ ❝♦❞✐♠❡♥sã♦ 1✱ ♦✉ s❡❥❛✱ dim(S) = dim(M)1 t❛❧ q✉❡✿

✭✐✮ O ∩S ={x0} ✭✐✐✮ d

dtϕt(x)6∈TxS,∀x∈S.

❉❛❞♦ x♥✉♠❛ ✈✐③✐♥❤❛♥ç❛ Vx0 ⊂S ❞❡x0✱ ❞❡✜♥❛ ❛ ❛♣❧✐❝❛çã♦

P :Vx0 −→S

x7−→ϕτ(x)

♦♥❞❡ τ é ♦ ♠❡♥♦r ✈❛❧♦r ♣♦s✐t✐✈♦ ❞❡ t ♣❛r❛ ♦ q✉❛❧ ϕt(x)∈S✳ ❆ ❛♣❧✐❝❛çã♦ P é ❝❤❛♠❛❞❛ ❛♣❧✐❝❛çã♦ ❞❡ P♦✐♥❝❛ré ❡ ❛ s✉❜✈❛r✐❡❞❛❞❡Sé ❛ ❙❡çã♦ ❞❡ P♦✐♥❝❛ré✳

✭❱❡r ✜❣✉r❛ ✶✳✸✮✳

❋✐❣✉r❛ ✶✳✸✿ ❆♣❧✐❝❛çã♦ ❞❡ P♦✐♥❝❛ré✳

❉❡ ♠❡s♠♦ ♠♦❞♦✱ ❞❛❞♦ ✉♠ s✐st❡♠❛ ❞✐♥â♠✐❝♦ ❞✐s❝r❡t♦ (M,Z, f)✱ ♣♦❞❡♠♦s ❝♦♥str✉✐r ✉♠ ✢✉①♦ ❞❡✜♥✐❞♦ ❡♠ ✉♠ ❡s♣❛ç♦ ❞❡ ❞✐♠❡♥sã♦ ✐❣✉❛❧ ❛ dim(M) + 1✳ ❊st❡ ✢✉①♦ é ❞❡♥♦♠✐♥❛❞♦ s✉s♣❡♥sã♦ ❞❛ ❛♣❧✐❝❛çã♦ f✱ q✉❡ é ❝♦♥str✉í❞♦ ❝♦♠♦ s❡❣✉❡✳

❙❡❥❛ f :M →M ✉♠❛ ❛♣❧✐❝❛çã♦ ❞❡ ❝❧❛ss❡Cr, r0✱ ❝♦♥s✐❞❡r❡♠♦s ♦ ♣r♦❞✉t♦ ❝❛rt❡s✐❛♥♦R×M✳ ❉❡✜♥❛ ❛ r❡❧❛çã♦ ❞❡ ❡q✉✐✈❛❧ê♥❝✐❛(s+1, x)(s, f(x))✱ ♦❜t❡♠♦s ♦ s❡❣✉✐♥t❡ ❡s♣❛ç♦ q✉♦❝✐❡♥t❡

(25)

✶✺ ✶✳✹✳ ❚❊❖❘❊▼❆ ❉❖ ❋▲❯❳❖ ❚❯❇❯▲❆❘

P❛r❛ ♦❜t❡r t♦❞♦s ♦s ♣♦♥t♦s é s✉✜❝✐❡♥t❡ ❝♦♥s✐❞❡r❛r 0 s 1✱ ♠❛s ♦s ♦✉tr♦s ♣♦♥t♦s sã♦ ✐♥❝❧✉í❞♦s ♣♦rq✉❡ ❡❧❡s ❞❡✐①❛♠ ❝❧❛r♦ q✉❡ ♦ ❡s♣❛ç♦ q✉♦❝✐❡♥t❡ t❡♠ ✉♠❛ ❡str✉t✉r❛ Cr s❡f ❢♦r Cr✳ ❈♦♥s✐❞❡r❡♠♦s ❛s ❡q✉❛çõ❡s ❡♠ R×M✱ ❞❛❞❛s ♣♦rx˙ = 0 ❡ s˙ = 1✳

❊❧❛s ✐♥❞✉③❡♠ ✉♠ ✢✉①♦ϕ−t❡♠R×M q✉❡ ♣❛ss❛ ❛♦ ✢✉①♦ϕt♥♦ ❡s♣❛ç♦ q✉♦❝✐❡♥t❡

Mf✳ ◆♦t❡ q✉❡ ϕ−1(0, x) = (1, x)∼(0, f(x))✱ ♣❛r❛ t♦❞♦ t✳ ✭❱❡r ✜❣✉r❛ ✶✳✹✮✳

❋✐❣✉r❛ ✶✳✹✿ ❙✉s♣❡♥sã♦ ❞❡ ✉♠❛ ❛♣❧✐❝❛çã♦✳

◆♦t❡ q✉❡✱ s❡ ✐❞❡♥t✐✜❝❛r♠♦s M ❝♦♠ ❛ s❡çã♦ S={0} ×M ❞♦ ✢✉①♦ϕt✱ ♦❜t❡♠♦s

❝♦♠♦ ❛♣❧✐❝❛çã♦ ❞❡ P♦✐♥❝❛ré ❛ ❛♣❧✐❝❛çã♦ f✳ ❆ss✐♠✱ ❧♦❝❛❧♠❡♥t❡✱ ❛ s✉s♣❡♥sã♦ ❡ ❛

❛♣❧✐❝❛çã♦ ❞❡ P♦✐♥❝❛ré sã♦ ❝♦♥str✉çõ❡s ✐♥✈❡rs❛s ✉♠❛ ❞❛ ♦✉tr❛✳

✶✳✹ ❚❡♦r❡♠❛ ❞♦ ❋❧✉①♦ ❚✉❜✉❧❛r

❯♠ ♣r♦✈❛ ❞♦ t❡♦r❡♠❛ ❛ s❡❣✉✐r ♣♦❞❡ s❡r ❡♥❝♦♥tr❛❞♦ ❡♠ ❬✶✺❪✳

❚❡♦r❡♠❛ ✶✳✸✼ ✭❆♣❧✐❝❛çã♦ ■♥✈❡rs❛✮✳ ❙❡❥❛ f : U Rm ✉♠❛ ❛♣❧✐❝❛çã♦ ❞❡ ❝❧❛ss❡ Cr r 1✱ ♥♦ ❛❜❡rt♦ U Rm s❡ aU é t❛❧ q✉❡ ❛ ❞❡r✐✈❛❞❛ Df(a) :Rm Rm é ✉♠ ✐s♦♠♦r✜s♠♦ ✭✐st♦ é✱ detJf(a)6= 0) ❡♥tã♦ ❢ é ✉♠ ❞✐❢❡♦♠♦r✜s♠♦ ❧♦❝❛❧✳

❉❡✜♥✐çã♦ ✶✳✸✽✳ ❙❡❥❛♠ X : U Rn ✉♠ ❝❛♠♣♦ ❞❡ ❝❧❛ss❡ Cr, r 1 U Rn ❛❜❡rt♦ ❡ A ⊂ Rn−1 t❛♠❜é♠ ❛❜❡rt♦✳ ❯♠❛ ❛♣❧✐❝❛çã♦ ❞✐❢❡r❡♥❝✐á✈❡❧ f :AU ❞❡ ❝❧❛ss❡ Cr ❝❤❛♠❛✲s❡ s❡çã♦ tr❛♥s✈❡rs❛❧ ❧♦❝❛❧ ❞❡ ❳ q✉❛♥❞♦✱ a A

Df(a)·(Rn−1) ❡ X(f(a)) ❣❡r❛♠ ♦ ❡s♣❛ç♦ Rn✳

❙❡❥❛ Σ = f(A) ♠✉♥✐❞♦ ❞❛ t♦♣♦❧♦❣✐❛ ✐♥❞✉③✐❞❛ ♣♦r ❯✳ ❙❡ f : A Σ ❢♦r ✉♠ ❤♦♠❡♦♠♦r✜s♠♦✱ ❞✐③✲s❡ q✉❡ Σ é ✉♠❛ s❡çã♦ tr❛♥s✈❡rs❛❧ ❞❡ ❳✳

❚❡♦r❡♠❛ ✶✳✸✾ ✭❋❧✉①♦ ❚✉❜✉❧❛r✮✳ ❙❡❥❛ p ✉♠ ♣♦♥t♦ ♥ã♦ s✐♥❣✉❧❛r ❞❡ ✉♠ ❝❛♠♣♦ X : U Rn Rn ❞❡ ❝❧❛ss❡ Cr, r 1 f : A Σ ✉♠❛ s❡çã♦ tr❛♥s✈❡rs❛❧ ❧♦❝❛❧ ❞❡ ❳ ❞❡ ❝❧❛ss❡ Cr ❝♦♠ f(0) = p✳ ❊♥tã♦ ❡①✐st❡ ✉♠❛ ✈✐③✐♥❤❛♥ç❛ V ❞❡ p ❡♠ U ✉♠ ❞✐❢❡♦♠♦r✜s♠♦ h: (ǫ, ǫ)×B V ❞❡ ❝❧❛ss❡ Cr✱ ♦♥❞❡ ǫ >0 B é ✉♠❛ ❜♦❧❛ ❡♠ Rn−1 ❞❡ ❝❡♥tr♦ ♥❛ ♦r✐❣❡♠ t❛❧ q✉❡ h é ✉♠❛Cr✲❝♦♥❥✉❣❛çã♦ ❡♥tr❡ ♦ ❝❛♠♣♦ X|

(26)

✶✻ ✶✳✹✳ ❚❊❖❘❊▼❆ ❉❖ ❋▲❯❳❖ ❚❯❇❯▲❆❘

❉❡♠♦♥str❛çã♦✳ ❙❡❥❛ϕ :GU ♦ ✢✉①♦ ❞♦ ❝❛♠♣♦ ❳✱ ♦♥❞❡G={(t, x)R×U}

❙❡❥❛

F :GA={(t, u) : (t, f(u))∈G} →U

GA ⊂ R × A✱ ❞❡✜♥✐❞❛ ♣♦r F(t, u) = ϕ(t, f(u))✳ ❋ ❛♣❧✐❝❛ ❧✐♥❤❛s ♣❛r❛❧❡❧❛s ❡♠ ❝✉r✈❛s ✐♥t❡❣r❛✐s ❞❡ ❳✳ ▼♦str❡♠♦s q✉❡ ❋ é ✉♠ ❞✐❢❡♦♠♦r✜s♠♦ ❧♦❝❛❧ ❡♠ 0 = (0,0) R × Rn−1✳ P❡❧♦ t❡♦r❡♠❛ ❞❛ ❛♣❧✐❝❛çã♦ ✐♥✈❡rs❛ ✶✳✸✼✱ é s✉✜❝✐❡♥t❡

♠♦str❛r q✉❡ DF(0) é ✉♠ ✐s♦♠♦r✜s♠♦✳ ❉❡ ❢❛t♦✱

D1F(0) = D1ϕ(0, f(0)) =

d

dtϕ(t, f(0)|t=0 =X(ϕ(0, p)) =X(p)

❊ ♠❛✐s✱ D2F(t, u) = D2ϕ(t, f(u)) ❡ ϕ(0, f(u)) =f(u)♣❛r❛ t♦❞♦ u∈A✳ ▲♦❣♦✱

D2F(0, u) =D2ϕ(0, f(u)) = D1f(u)⇒D2F(0) =D1f(0)

Pr♦ss❡❣✉✐♥❞♦ ❛ss✐♠ ♦❜t❡♠♦s✱

DjF(0) =Dj−1f(0), j= 2, . . . , n.

P♦rt❛♥t♦ ♦s ✈❡t♦r❡s DjF(0), j = 1, . . . , n ❣❡r❛♠ ♦ Rn ❡ ❞❛í detDF(0) 6= 0✱ ♦✉ s❡❥❛✱ DF(0) é ✉♠ ✐s♦♠♦r✜s♠♦✳ ❆♣❧✐❝❛♥❞♦ ✶✳✸✼ ❡①✐st❡♠ ǫ > 0 ❡ ✉♠❛ ❜♦❧❛

B Rn−1 ❝♦♠ ❝❡♥tr♦ ♥❛ ♦r✐❣❡♠ t❛✐s q✉❡ h := F|((−ǫ,ǫ)×B) é ✉♠ ❞✐❢❡♦♠♦r✜s♠♦ s♦❜r❡ ♦ ❛❜❡rt♦ V :=F((−ǫ, ǫ)×B)✳

❋✐♥❛❧♠❡♥t❡✱ ♠♦str❡♠♦s q✉❡ ❤ é ❛ Cr❝♦♥❥✉❣❛çã♦ ❡♥tr❡ ♦s ❝❛♠♣♦s ❨ ❡ X| V✳ ❙❡❥❛♠ ψ(t, x) = x + (t,0, . . . ,0) ♦ ✢✉①♦ ❞❡ ❨✱ x = (t0, u0) ∈ (−ǫ, ǫ) × B ❡

t∈(−ǫ−t0, ǫ−t0)✳ ❆ss✐♠✱ ♣❛r❛ ♦ ♣❛r(t, x) ✈❛❧❡✿

h(ψ(t, x)) =ϕ(t, h(x))ϕ(t, h(ψ(t, x))) =h(x)

♦✉ s✐♥t❡t✐❝❛♠❡♥t❡✱ϕ−t◦h◦ψt(x) =h(x)✳ ❈♦♠ ✐ss♦✱ t❡♠♦s✿

ϕ−t◦h◦ψt(x) =ϕ−t◦h◦ψt(t0, u0) =ϕ−t◦h◦ψ(t+t0, u0) =ϕ−t◦ϕ(t+t0, f(u0)) =ϕ(t0, f(u0))

=h(t0, u0) =h(x).

(27)

✶✼ ✶✳✹✳ ❚❊❖❘❊▼❆ ❉❖ ❋▲❯❳❖ ❚❯❇❯▲❆❘

(28)

❈❛♣ít✉❧♦ ✷

❍✐♣❡r❜♦❧✐❝✐❞❛❞❡

✷✳✶ Pr❡❧✐♠✐♥❛r❡s

❉❡✜♥✐çã♦ ✷✳✶✳ ❙❡❥❛ E ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ s♦❜r❡ ♦ ❝♦r♣♦ K✳ ❯♠❛ ♥♦r♠❛ ❡♠ E

é ✉♠❛ ❛♣❧✐❝❛çã♦ k · k:E [0,+) q✉❡ s❛t✐s❢❛③

✶✳ ✭◆✉❧✐❞❛❞❡✮ kxk= 0⇔x= 0 ✷✳ ✭❍♦♠♦❣❡♥❡✐❞❛❞❡✮ kλx k=|λ| kxk

✸✳ ✭❉❡s✐❣✉❛❧❞❛❞❡ tr✐❛♥❣✉❧❛r✮ kx+yk≤kxk+ky k

♣❛r❛ q✉❛✐sq✉❡r ✈❡t♦r❡s x, y E ❡ ❡s❝❛❧❛r λK✳

❯♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ é ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ E ♠✉♥✐❞♦ ❞❡ ✉♠❛ ♥♦r♠❛ k · k

❯♠❛ s❡q✉ê♥❝✐❛ (xn)n∈N ❞❡ ✈❡t♦r❡s ❡♠ ✉♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ E é ❞❡ ❈❛✉❝❤② s❡ ♣❛r❛ t♦❞♦ ǫ >0 ❞❛❞♦✱ ❡①✐st❡ ✉♠n0 ∈N t❛❧ q✉❡ kxm−xn k< ǫ, ∀ m, n > n0✳ ❉❡✜♥✐çã♦ ✷✳✷✳ ❯♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ E é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ s❡ t♦❞❛

s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ❢♦r ❝♦♥✈❡r❣❡♥t❡✳

❊①❡♠♣❧♦ ✷✳✸✳ ❖s ❡s♣❛ç♦s ♥♦r♠❛❞♦s Rn✱ ❝♦♠ ❛ ♥♦r♠❛

kxk= n X

i=1

|xi |2 !1/2

♦♥❞❡ x= (x1, . . . , xn)✱ sã♦ ❡s♣❛ç♦s ❞❡ ❇❛♥❛❝❤✱ ♣♦✐s t♦❞❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ❡♠

Rn ❝♦♥✈❡r❣❡✳

❉❡✜♥✐çã♦ ✷✳✹✳ ❙❡❥❛ E ✉♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ ❝♦♠♣❧❡①♦ ❡ s❡❥❛ A : E E ✉♠

♦♣❡r❛❞♦r ❧✐♥❡❛r✳ ❖ ❡s♣❡❝tr♦ ❞❡ A é ♦ ❝♦♥❥✉♥t♦

sp(A) :={λ ∈C: (λI−A) ♥ã♦ é ✐♥✈❡rtí✈❡❧}.

Figure

Updating...

References

Updating...

Download now (76 página)