Feedback

Last interglacial temperature evolution – a model inter-comparison

 0  3  15  2017-02-01 13:40:07 Report infringing document
Documento informativo
Climate of the Past Open Access Clim. Past, 9, 605–619, 2013 www.clim-past.net/9/605/2013/ doi:10.5194/cp-9-605-2013 © Author(s) 2013. CC Attribution 3.0 License. Last interglacial temperature evolution – a model inter-comparison Geoscientiic P. Bakker1 , E. J. Stone2 , S. Charbit3 , M. Gröger4 , U. Krebs-Kanzow5 , S. P. Ritz6 , V. Varma7 , V. Khon5,8 , D. J. Lunt2 , U. Mikolajewicz4 , M. Prange7 , H. Renssen1 , B. Schneider5 , and M. Schulz7 1 Earth & Climate Cluster, Department of Earth Sciences, VU University Amsterdam, 1081HV Amsterdam, the Netherlands Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK 3 LSCE-CEA-CNRS, Laboratoire des Sciences du climat et de l’environnement (IPSL/LSCE), UMR8212, CEA-CNRS-UVSQ, CE-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France Geoscientiic 4 Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany 5 Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany 6 Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland 7 MARUM – Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Klagenfurter Strasse, 28334 Bremen, Germany 8 A.M.Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia 2 Bristol Correspondence to: P. Bakker (p.bakker@vu.nl) Received: 16 July 2012 – Published in Clim. Past Discuss.: 20 September 2012 Revised: 27 February 2013 – Accepted: 1 March 2013 – Published: 11 March 2013 Abstract. There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are crucial. Thirdly, the presence of remnant continental ice from the preceding glacial has shown to be important when determining the timing of maximum LIG warmth in the Northern Hemisphere. Finally, the results reveal that changes in the monsoon regime exert a strong control on the evolution of LIG temperatures over parts of Africa and India. By listing these inter-model differences, we provide a starting point for future proxy-data studies and the sensitivity experiments needed to constrain the climate simulations and to further enhance our understanding of the temperature evolution of the LIG period. Published by Copernicus Publications on behalf of the European Geosciences Union. 606 1 P. Bakker et al.: Last interglacial temperature evolution – a model inter-comparison Introduction To strengthen our confidence in climate models, it is important to assess their ability to realistically simulate a climate different from the present-day climate (Braconnot et al., 2012). The last interglacial period (LIG; ∼ 130 000– 115 000 yr BP) provides an interesting period, because many proxy-based reconstructions show temperatures up to several degrees higher than present day (CAPE-members, 2006; Turney and Jones, 2010; McKay et al., 2011). However, to date, the evolution of the climate during the LIG is still under debate. This is especially true for the establishment of peak interglacial warmth in different regions. For instance, proxy-based reconstructions of surface temperatures from the Norwegian Sea and the North Atlantic are inconclusive on whether peak interglacial warmth occurred in the first or in the second part of the LIG (Bauch and Kandiano, 2007; Nieuwenhove et al., 2011; Govin et al., 2012). The main cause of this uncertainty is the difficulty in establishing a coherent stratigraphic framework for the LIG period, not only between different regions (e.g. the Norwegian Sea and the North Atlantic) but also between different types of proxyarchives (e.g. speleothems, ice cores, deep-sea cores and lake sediments, e.g. Waelbroeck et al., 2008). Deciphering the evolution of LIG surface temperatures is further complicated by the fact that different types of proxies record different parts of the climatic signal: for instance maximum summer warmth, the number of days above a threshold temperature, the seasonal temperature contrast or average summer temperatures (Jones and Mann, 2002; Sirocko et al., 2006). Climate simulations covering the LIG period can be used to facilitate the interpretation of proxy-based temperature reconstructions by providing information on the timing of peak interglacial warmth for different months and on possible spatial differences in the evolution of temperatures. For the LIG period a large number of equilibrium simulations have been analysed (Montoya, 2007; Lunt et al., 2012, and references therein). However, to investigate the evolution of temperatures throughout this period and the timing of maximum warmth (MWT), the transient nature of two of the major forcings, changes in the astronomical configuration and changes in the concentrations of the major greenhouse-gases (GHGs), has to be incorporated. A small number of transient climate simulations have previously been performed for the LIG (e.g. Calov et al., 2005; Gröger et al., 2007; Ritz et al., 2011a). Amongst other things they indicate the importance of changes in the overturning circulation and the sea-ice cover. These are however known to be highly model-dependent stressing the need for a larger model intercomparison. In this study we present the first investigation of the common LIG temperature signal in long, > 10 000 yr, transient simulations performed with seven different climate models. Included are both published LIG transient simulations (Gröger et al., 2007) as well as ones recently performed Clim. Past, 9, 605–619, 2013 within the PMIP3 framework (Paleoclimate Modelling Intercomparison Project). The climate models used in this inter-comparison study differ in complexity from 2.5-D atmosphere–ocean–vegetation models to general circulation models (GCMs). Some also differ in terms of the climatic forcing and in the components of the climate system which are included (Table 1). The objectives of this model inter-comparison are the following: (1) to determine the transient temperature response to LIG forcings which is common to the different models, (2) to analyse the simulated spatio-temporal response of temperatures during the LIG and (3) to indicate in which regions climatic feedbacks likely played a crucial role in shaping the LIG temperature evolution. This study provides an important step towards a future comparison of LIG proxy-based reconstructions and transient model simulations. 2 Model simulations We performed transient LIG climate simulations with a total of seven different climate models of different complexity. In the following model descriptions, we focus only on the relevant differences between the models and the simulation design. For a complete description, see Table 1. In the second part of this section, an overview of the evolution of the main climate forcings of the LIG period is given in terms of changes in the insolation received by Earth and the changes in the GHG concentrations. 2.1 2.1.1 Description of the climate models Bern3D The Bern3D Earth system model of intermediate complexity (EMIC) consists of a two-dimensional atmospheric energy and moisture balance model that is coupled to a threedimensional sea-ice–ocean model. In the atmospheric component, heat is transported horizontally by diffusion only while moisture is transported by both diffusion and prescribed advection (Edwards and Marsh, 2005; Müller et al., 2006; Ritz et al., 2011a,b). This means that, compared to other models, the spatial and temporal changes in surface temperatures simulated by the Bern3D model are more directly linked to local changes in the radiative forcing. This simulation includes prescribed changes in the extent of the Northern Hemisphere (NH) continental ice sheets (the Antarctic ice sheet is fixed to present-day configuration because of the coarse resolution of the model at high latitudes). The extent of the NH continental ice sheets is calculated using the benthic δ 18 O stack (a proxy for global ice volume) of Lisiecki and Raymo (2005) in order to scale the ice sheet between the modern and the Last Glacial Maximum extent (Ritz et al., 2011a). Consequently, until ∼ 125 ka BP remnants of the North American and Eurasian ice sheets from the preceding glacial period are prescribed next to the Greenland www.clim-past.net/9/605/2013/ P. Bakker et al.: Last interglacial temperature evolution – a model inter-comparison 607 Table 1. List of the main features of the climate models involved in this model inter-comparison. Unless stated otherwise, sea-level, vegetation cover and ice-sheet configuration are fixed to pre-industrial values. The equilibrium GHG values used by CCSM3 and KCM are respectively 272 and 280 ppm for CO2 , 622 and 760 ppb for CH4 and 259 and 270 ppb for N2 O. In column six information about the applied spin-up procedure is given by stating if the spin-up was an equilibrium (eq.) or transient (trans.) simulation, what the corresponding start year (ka BP) of the corresponding forcing scenario is and, in the case of an equilibrium spin-up simulation, what the length (ka) of the spin-up period is (between brackets). The other used acronyms are Earth system model of intermediate complexity (EMIC), general circulation model (GCM), astronomical configuration (orb), astronomical acceleration with a factor of 10 (acc), greenhouse-gas concentrations (ghg), and prescribed changes in ice sheet configuration (ice). Model name Model complexity Time range (ka BP) Included forcings Additional components Spin-up procedure Resolution atmospheric component Resolution oceanic component Reference Bern3D EMIC 130– 115 orb/ghg/ice – eq. 130 (5) between 3.2 and 19.2 by 10 and 1 vert. layer between 3.2 and 19.2 by 10 and 32 vert. layers Edwards and Marsh (2005) Müller et al. (2006) Ritz et al. (2011a) Ritz et al. (2011b) CCSM3 GCM 130– 115 orb(acc) – eq. 130 (0.4) 3.75 by 3.75 (T31) and 26 vert. layers 3.6 by 1.6 and 25 vert. layers Collins et al. (2006) CLIMBER-2 EMIC 130– 115 orb/ghg vegetation trans. 420 10 by 51 and 1 vert. layer 2.5 and 20 vert. layers Petoukhov et al. (2000) FAMOUS GCM 130– 115 orb/ghg – trans. 132 5 by 7.5 and 11 vert. layers 2.5 by 3.75 and 20 vert. layers Gordon et al. (2000); Jones et al. (2005) Smith (2012) Smith and Gregory (2012) KCM GCM 126– 115 orb(acc) – eq. 126 (1) 3.75 by 3.75 (T31) and 19 vert. layers between 0.5 and 2 by 2 and 31 vert. layers Park et al. (2009) LOVECLIM EMIC 130– 115 orb/ghg – trans. 132 5.6 by 5.6 and 3 vert. layers 3 by 3 and 20 vert. layers Goosse et al. (2010) MPI-UW GCM 128– 115 orb/prognostic pCO2 trans. 129 vegetation, marine carbon cycle and biogeochemistry 5.6 by 5.6 (T21) and 19 vert. layers 4 by 4 and 22 vert. layers Gröger et al. (2007) Mikolajewicz et al. (2007) ice sheet. Between ∼ 125 ka–121 ka BP, only the Greenland ice sheet remains, and after ∼ 121 ka BP the extent of the North American and Eurasian ice sheets start to increase again. Related to a decrease of the extent of the NH ice sheets, the model includes a meltwater flux from the melting remnant ice sheets into the ocean. During the period when the ice sheets increase, freshwater is removed globally from the ocean surface. Note that the sea level is nonetheless fixed to the present-day situation. The simulation is similar to the one presented by Ritz et al. (2011a) but with the adjusted parameter set of Ritz et al. (2011b). 2.1.2 CCSM3 The CCSM3 (Community Climate System Model, version 3) is a GCM which is composed of four components representing atmosphere (CAM3), ocean (POP), land, and sea ice (Collins et al., 2006). For the simulation in this study, the low-resolution version of CCSM3 is used, which is described in detail by Yeager et al. (2006). The transient simulation has www.clim-past.net/9/605/2013/ been carried out with 10 times accelerated astronomical forcing (see Sect. 2.3 for details). 2.1.3 CLIMBER-2 The CLIMBER-2 EMIC is a 2.5-D atmosphere–ocean– vegetation model of intermediate complexity (Petoukhov et al., 2000). The atmospheric component is a low-resolution 2.5-D statistical–dynamic model. The oceanic component is a zonally averaged multi-basin (Atlantic, Indian and Pacific) model which resolves these basins only in the latitudinal direction. CLIMBER-2 includes a thermodynamic seaice model that computes the evolution of sea-ice coverage and thickness. Note that, in contrast to most of the simulations in this inter-comparison, vegetation is actively simulated. This transient simulation is part of a longer simulation covering the last 4 glacial–interglacial cycles (420–0 ka BP) resulting in the initial conditions of this simulation being different from the other simulations. Clim. Past, 9, 605–619, 2013 608 2.1.4 P. Bakker et al.: Last interglacial temperature evolution – a model inter-comparison FAMOUS The FAMOUS GCM (Jones et al., 2005; Smith and Gregory, 2012; Smith, 2012) is a low-resolution version of the HadCM3 GCM (Gordon et al., 2000) with roughly half the horizontal resolution in both the atmosphere and ocean and a longer time step. 2.1.5 Kiel Climate Model The Kiel Climate Model (KCM) GCM consists of the ECHAM5 atmospheric GCM coupled to the Nucleus for European Modeling of the Ocean (NEMO) ocean–sea-ice GCM (Park et al., 2009). The simulation runs from 126 to 115 ka BP and has been performed with 10 times accelerated astronomical forcing (see Sect. 2.3 for details). 2.1.6 LOVECLIM The LOVECLIM EMIC includes a simplified atmospheric component and a low-resolution ocean GCM (Goosse et al., 2010). 2.1.7 MPI-UW The MPI-UW (Max Planck Institute for Meteorology and University of Wisconsin-Madison) Earth system model (Mikolajewicz et al., 2007) is a GCM which consists of the ECHAM3 atmospheric GCM, the Large Scale Geostrophic Ocean (LSG2) GCM including a simple sea-ice model, the Hamburg Ocean Carbon Cycle model (HAMOCC) and the Lund Potsdam Jena dynamical terrestrial vegetation model (LPJ). The latter two components encompass the entire carbon cycle, which allows for the prognostic calculation of atmospheric pCO2 from the fluxes of HAMOCC and LPJ. In turn, the prognostic pCO2 is then used in the radiative calculations resulting in the GHG forcing in this simulation to be different. The atmosphere in this MPI-UW simulation was integrated in periodically synchronous mode. In this method the slow components such as the ocean and vegetation are integrated for the entire time span, but the fast (and computationally expensive) atmospheric component is integrated only part of the time. In the meantime the ocean model is driven with fluxes from previous synchronous integration periods in combination with an EBM-type damping for small sea surface temperature anomalies. The main underlying assumption is that the atmosphere is in statistical equilibrium with the underlying sea-surface temperature and sea ice distribution. The LIG MPI-UW simulation runs from 128 to 115 ka BP (Schurgers et al., 2007; Gröger et al., 2007). Note that in this simulation the vegetation is not fixed at preindustrial values but actively simulated. Clim. Past, 9, 605–619, 2013 2.2 Evolution of the main climatic forcings of the LIG period Having an overview of the changes in main climate forcings will allow us to identify if the simulations show a linear relation between changes in temperature and the climatic forcings or if feedback mechanisms within the climate system are important. The two climate forcings discussed here are the amount of insolation received by Earth and atmospheric GHG concentrations (Figs. 1 and 3; values according to the PMIP3 protocol, http://pmip3.lsce.ipsl.fr/). The changes in the amount of insolation received by Earth result from changes in the astronomical configuration. Globally enfocar la importancia de la producción mediática de los niños en su descubrimiento del mundo, sobre todo utilizando el periódico escolar y la imprenta. Asimismo las asociaciones de profesores trabajaron en esta línea e incluso la enseñanza católica se comprometió desde los años sesenta realizando trabajos originales en el marco de la corriente del Lenguaje Total. Páginas 43-48 45 Comunicar, 28, 2007 En el ámbito de los medios, también desde el principio del siglo XX hay ciertas corrientes de conexión. Pero es a lo largo de los años sesenta cuando se constituyeron asociaciones de periodistas apasionados por sus funciones de mediadores, que fomentaron la importancia ciudadana de los medios como algo cercano a los jóvenes, a los profesores y a las familias. Así se crearon la APIJ (Asociación de Prensa Información para la Juventud), la ARPEJ (Asociación Regional de Prensa y Enseñanza para la Juventud), el CIPE (Comité Interprofesional para la Prensa en la Escuela) o la APE (Asociación de Prensa y Enseñanza), todas ellas para la prensa escrita Estas asociaciones fueron precedidas por movimientos surgidos en mayo de 1968, como el CREPAC que, utilizando películas realizadas por periodistas conocidos, aclaraba temas que habían sido manipulados por una televisión demasiado próxima al poder político y realizaba encuentros con grupos de telespectadores. cipio del siglo XX, y nos han legado textos fundadores muy preciados, importantes trabajos de campo y muchos logros educativos y pedagógicos. La educación en medios ha tenido carácter de oficialidad de múltiples maneras, aunque nunca como una enseñanza global. Así la campaña «Operación Joven Telespectador Activo» (JTA), lanzada al final de los años setenta y financiada de manera interministerial para hacer reflexionar sobre las prácticas televisuales de los jóvenes, la creación del CLEMI (Centro de Educación y Medios de Comunicación) en el seno del Ministerio de Educación Nacional en 1983, la creación de la optativa «Cine-audiovisual» en los bachilleratos de humanidades de los institutos en 1984 (primer bachillerato en 1989) y múltiples referencias a la educación de la imagen, de la prensa, de Internet. La forma más visible y rápida de evaluar el lugar de la educación en medios es valorar el lugar que se le ha reservado en los libros de texto del sistema educa- 2. Construir la educación en los medios sin nombrarla El lugar que ocupa la edu- La denominación «educación en medios», que debería cación en los medios es muy ambiguo, aunque las cosas están cambiando recientemente. entenderse como un concepto integrador que reagrupase todos los medios presentes y futuros, es a menudo percibida En principio, en Francia, co- por los «tradicionalistas de la cultura» como una tendencia mo en muchos otros países, la educación en los medios no es hacia la masificación y la pérdida de la calidad. una disciplina escolar a tiempo completo, sino que se ha ido conformado progresivamente a través de experiencias y reflexiones teóricas que han tivo en Francia. Una inmersión sistemática nos permi- permitido implantar interesantes actividades de carác- te constatar que los textos oficiales acogen numerosos ter puntual. Se ha ganado poco a poco el reconoci- ejemplos, citas, sin delimitarla con precisión. miento de la institución educativa y la comunidad es- colar. Podemos decir que ha conquistado un «lugar», 3. ¿Por qué la escuela ha necesitado casi un siglo en el ámbito de la enseñanza transversal entre las dis- para oficilializar lo que cotidianamente se hacía en ciplinas existentes. ella? Sin embargo, la escuela no está sola en esta aspi- Primero, porque las prácticas de educación en me- ración, porque el trabajo en medios es valorado igual- dios han existido antes de ser nombradas así. Recor- mente por el Ministerio de Cultura (campañas de foto- demos que no fue hasta 1973 cuando aparece este grafía, la llamada «Operación Escuelas», presencia de término y que su definición se debe a los expertos del colegios e institutos en el cine ), así como el Minis- Consejo Internacional del Cine y de la Televisión, que terio de la Juventud y Deportes que ha emprendido en el seno de la UNESCO, definen de esta forma: numerosas iniciativas. «Por educación en medios conviene entender el estu- Así, esta presencia de la educación en los medios dio, la enseñanza, el aprendizaje de los medios moder- no ha sido oficial. ¡La educación de los medios no apa- nos de comunicación y de expresión que forman parte rece oficialmente como tal en los textos de la escuela de un dominio específico y autónomo de conocimien- francesa hasta 2006! tos en la teoría y la práctica pedagógicas, a diferencia Este hecho no nos puede dejar de sorprender ya de su utilización como auxiliar para la enseñanza y el que las experiencias se han multiplicado desde el prin- aprendizaje en otros dominios de conocimientos tales Páginas 43-48 46 Comunicar, 28, 2007 como los de matemáticas, ciencias y geografía». A pe- mente en todas las asignaturas. Incluso los nuevos cu- sar de que esta definición ha servido para otorgarle un rrículos de materias científicas en 2006 para los alum- reconocimiento real, los debates sobre lo que abarca y nos de 11 a 18 años hacen referencia a la necesidad no, no están totalmente extinguidos. de trabajar sobre la información científica y técnica y En segundo lugar, porque si bien a la escuela fran- el uso de las imágenes que nacen de ella. cesa le gusta la innovación, después duda mucho en Desde junio de 2006, aparece oficialmente el tér- reflejar y sancionar estas prácticas innovadoras en sus mino «educación en medios» al publicar el Ministerio textos oficiales. Nos encontramos con una tradición de Educación los nuevos contenidos mínimos y las sólidamente fundada sobre una transmisión de conoci- competencias que deben adquirir los jóvenes al salir mientos muy estructurados, organizados en disciplinas del sistema educativo. escolares que se dedican la mayor parte a transmitir Este documento pretende averiguar cuáles son los conocimientos teóricos. La pedagogía es a menudo se- conocimientos y las competencias indispensables que cundaria, aunque los profesores disfrutan de una ver- deben dominar para terminar con éxito su escolaridad, dadera libertad pedagógica en sus clases. El trabajo seguir su formación y construir su futuro personal y crítico sobre los medios que estaba aún en elaboración profesional. Siete competencias diferentes han sido te- necesitaba este empuje para hacerse oficial. nidas en cuenta y en cada una de ellas, el trabajo con Aunque el trabajo de educación en los medios no los medios es reconocido frecuentemente. Para citar esté reconocido como disciplina, no está ausente de un ejemplo, la competencia sobre el dominio de la len- gua francesa definen las capa- cidades para expresarse oral- La metodología elaborada en el marco de la educación en mente que pueden adquirirse con la utilización de la radio e, medios parece incluso permitir la inclinación de la sociedad incluso, se propone fomentar de la información hacia una sociedad del conocimiento, como defiende la UNESCO. En Francia, se necesitaría unir el interés por la lectura a través de la lectura de la prensa. La educación en los medios las fuerzas dispersas en función de los soportes mediáticos y orientarse más hacia la educación en medios que al dominio adquiere pleno derecho y entidad en la sección sexta titulada «competencias sociales y cívi- técnico de los aparatos. cas» que indica que «los alum- nos deberán ser capaces de juz- gar y tendrán espíritu crítico, lo que supone ser educados en los las programaciones oficiales, ya que, a lo largo de un medios y tener conciencia de su lugar y de su influencia estudio de los textos, los documentalistas del CLEMI en la sociedad». han podido señalar más de una centena de referencias a la educación de los medios en el seno de disciplinas 4. Un entorno positivo como el francés, la historia, la geografía, las lenguas, Si nos atenemos a las cifras, el panorama de la las artes plásticas : trabajos sobre las portadas de educación en medios es muy positivo. Una gran ope- prensa, reflexiones sobre temas mediáticos, análisis de ración de visibilidad como la «Semana de la prensa y publicidad, análisis de imágenes desde todos los ángu- de los medios en la escuela», coordinada por el CLE- los, reflexión sobre las noticias en los países europeos, MI, confirma año tras año, después de 17 convocato- información y opinión rias, el atractivo que ejerce sobre los profesores y los Esta presencia se constata desde la escuela mater- alumnos. Concebida como una gran operación de nal (2 a 6 años) donde, por ejemplo, se le pregunta a complementariedad (2000) Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus. EMBO J 19: 1766–1776. 9. Hunsicker-Wang LM, Pacoma RL, Chen Y, Fee JA, Stout CD (2005) A novel cryoprotection scheme for enhancing the diffraction of crystals of recombinant cytochrome ba3 oxidase from Thermus thermophilus. Acta Crystallogr D Biol Crystallogr 61: 340–343. 10. Buschmann S, Warkentin E, Xie H, Langer JD, Ermler U, et al. (2010) The structure of cbb3 cytochrome oxidase provides insights into proton pumping. Science 329: 327–330. 11. Fee JA, Case DA, Noodleman L (2008) Toward a chemical mechanism of proton pumping by the B-type cytochrome c oxidases: application of density functional theory to cytochrome ba3 of Thermus thermophilus. J Am Chem Soc 130: 15002–15021. 12. Chang HY, Hemp J, Chen Y, Fee JA, Gennis RB (2009) The cytochrome ba3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping. Proc Natl Acad Sci U S A 106: 16169–16173. 13. Luna VM, Chen Y, Fee JA, Stout CD (2008) Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme-Cu oxidases. Biochemistry 47: 4657–4665. PLoS ONE | www.plosone.org 11 July 2011 | Volume 6 | Issue 7 | e22348 The 1.8 Å Structure of ba3Oxidase 27. Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, et al. (2004) Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science 306: 1390–1393. 28. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, et al. (2007) High-resolution crystal structure of an engineered human beta2adrenergic G protein-coupled receptor. Science 318: 1258–1265. 29. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, et al. (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322: 1211–1217. 30. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, et al. (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330: 1066–1071. 31. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, et al. (2010) Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. Science 330: 1091–1095. 32. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, et al. (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16: 897–905. 33. Cherezov V, Liu W, Derrick JP, Luan B, Aksimentiev A, et al. (2008) In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin. Proteins 71: 24–34. 34. Cherezov V, Clogston J, Papiz MZ, Caffrey M (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357: 1605–1618. 35. Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38: 29–51. 36. Loh HH, Law PY (1980) The role of membrane lipids in receptor mechanisms. Annu Rev Pharmacol Toxicol 20: 201–234. 37. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666: 62–87. 38. Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25: 153–163. 39. Qin L, Sharpe MA, Garavito RM, Ferguson-Miller S (2007) Conserved lipidbinding sites in membrane proteins: a focus on cytochrome c oxidase. Curr Opin Struct Biol 17: 444–450. 40. Sedlak E, Panda M, Dale MP, Weintraub ST, Robinson NC (2006) Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase. Biochemistry 45: 746–754. 41. Hunte C, Richers S (2008) Lipids and membrane protein structures. Curr Opin Struct Biol 18: 406–411. 42. Reichow SL, Gonen T (2009) Lipid-protein interactions probed by electron crystallography. Curr Opin Struct Biol 19: 560–565. 43. Yang YL, Yang FL, Jao SC, Chen MY, Tsay SS, et al. (2006) Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. J Lipid Res 47: 1823–1832. 44. Belrhali H, Nollert P, Royant A, Menzel C, Rosenbusch JP, et al. (1999) Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. Structure 7: 909–917. 45. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376–382. 46. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, et al. (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438: 633–638. 47. Seelig A, Seelig J (1977) Effect of single cis double bound on the structure of a phospholipid bilayer. Biochemistry 16: 45–50. 48. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22: 623–625. 49. Hoyrup P, Callisen TH, Jensen MO, Halperin A, Mouritsen OG (2004) Lipid protrusions, membrane softness, and enzymatic activity. Phys Chem Chem Phys 6: 1608–1615. PLoS ONE | www.plosone.org 50. Lee HJ, Svahn E, Swanson JM, Lepp H, Voth GA et al (2010) Intricate Role of Water in Proton Transport through Cytochrome c Oxidase. J Am Chem Soc 132: 16225–16239. 51. Aoyama H, Muramoto K, Shinzawa-Itoh K, Hirata K, Yamashita E, et al. (2009) A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. Proc Natl Acad Sci U S A 106: 2165–2169. 52. Schmidt B, McCracken J, Ferguson-Miller S (2003) A discrete water exit pathway in the membrane protein cytochrome c oxidase, Proc Natl Acad Sci U S A 100: 15539–15542. 53. Einarsdottir O, Choc MG, Weldon S, Caughey WS (1988) The site and mechanism of dioxygen reduction in bovine heart cytochrome c oxidase. J Biol Chem 263: 13641–13654. 54. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244: 456– 462. 55. Salomonsson L, Lee A, Gennis RB, Brzezinski P (2004) A single amino-acid lid renders a gas-tight compartment within a membrane-bound transporter. Proc Natl Acad Sci U S A 101: 11617–11621. 56. Yin H, Feng G, Clore GM, Hummer G, Rasaiah JC (2010) Water in the polar and nonpolar cavities of the protein Interleukin-1-beta. J Phys Chem B 114: 16290–16297. 57. Eisenberger P, Shulman RG, Brown GS, Ogawa S (1976) Structure-function relations in hemoglobin as determined by x-ray absorption spectroscopy. Proc Natl Acad Sci U S A 73: 491–495. 58. Chishiro T, Shimazaki Y, Tani F, Tachi Y, Naruta Y, et al. (2003) Isolation and crystal structure of a peroxo-brodged heme-copper complex. Ang Chem Int Ed 42: 2788– 2791. 59. Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A 94: 10547–10553. 60. Kaila VRI, Oksanen E, Goldman A, Bloch D, Verkhovsky MI, et al. (2011) A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. Biochim Biophys Acta 1807: 769–778. 61. Sakaguchi M, Shinzawa-Itoh K, Yoshikawa S, Ogura T (2010) A resonance Raman band assignable to the O-O stretching mode in the resting oxidized state of bovine heart cytochrome c oxidise. J Bioenerg Biomembr 42: 241–243. 62. Chance B, Saronio C, Waring A, Leigh Jr. JS (1978) Cytochrome c-cytochrome oxidase interactions at subzero temperatures. Biochim. Biophys. Acta 503: 37–55. 63. Cheng A, Hummel B, Qiu H, Caffrey M (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95: 11–21. 64. Cherezov V, Peddi A, Muthusubramaniam L, Zheng YF, Caffrey M (2004) A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr D Biol Crystallogr 60: 1795–1807. 65. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62: 859–866. 66. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40: 658–674. 67. McRee DE (2004) Differential evolution for protein crystallographic optimizations. Acta Crystallogr D Biol Crystallogr 60: 2276–2279. 68. Unno M, Chen H, Kusama S, Shaik S, Ikeda-Saito M (2007) Structural characterization of the fleeting ferric peroxo species in myoglobin, Experiment and theory. J Am Chem Soc 129: 13394–13395. 69. Kuhnel K, Derat E, Terner J, Shaik S, Schlicting I (2007) Structure and quantum chemical characterization of chloroperoxidase compound 0, a common reaction intermediate of diverse heme enzymes. Proc Natl Acad Sci U S A 104: 99–104. 12 July 2011 | Volume 6 | Issue 7 | e22348
Last interglacial temperature evolution – a model inter-comparison Last Interglacial Temperature Evolution Ndash A Model Inter Comparison
RECENT ACTIVITIES
Autor
Documento similar

Last interglacial temperature evolution – a model inter-comparison

Livre