THE PHILOSOPHICAL NEWTON Andrew Janiak, Newton as Philosopher (Cambridge: Cambridge University Press, 2008), ISBN 13 978-0-521-86286-8 (hardback), ISBN 13 978-0-511-41404-6 (eBook), pp. 196

 0  23  3  2017-01-13 12:27:59 Report infringing document

  !" #$ % %& !% ' '% ( ++ ) !" #$ % %&!!%*!* *%' ,,- !#' ∗ ∗ ∗ ∗

  • .( / + ( ( 0 0 11 , +0 2 ( 1+ +,( -3 4( (+ +, ( ( + +/ ( +0 )
  • ( / , ( ( 11 1 +0 2 ) , ( 1+ +,( 5-3 + 6+ + ( (%) + + 7,+ +/ ( )( 8

  ( ( +1 6 ): 0 + ;+1 8 1 + 9

  • )1

  !

  , 2 + < ( 1+ +,( -3 (+ 1 1

  • 01 ( 1 1 ) +0 ( ( +
    • 0 ( 1 ( )+01 ( +
    • (+ 0)( 1 ) +0 , + +) + + 4+

  / 1 + / 0

  • / ( ( + +/ ,( 1+ +,( - 9 )+ ) + ( ( : =% 1 )+ ,+ ) (+1 )+ ) , + +/

  , ) ( 0 0 11 + + ,1 / ( ( + ( + + ( + <

  • 1 + > ( ( ,, , ) 11 ( ) ) 0 ( ( , + 1 +/ +
    • 1 ,( 1+ +,( /+0 ( +10 + ? 0 ( ?
      • (+ ( + + ( ) 1 ,( 1+ +,( ) 1 , +/ ( 0 (+ +/ ( > )1

    • / + ( ( 2 ( ( ( + +/ ,( 1+ +,( 3 ,-

  • 9 ( + * / +/ + < (
  • )( ) 1 / + ( ) + + 1 )( ) ) /011 - 4(

  "

  • , +/ ,, + )( + 1 > , ) 11 - @- 6)A0 < ( (+ ( ( B,( 1+ +,( ) 1 + < ) 7 1 )(- 0 + + ,( )
  • <
  • < ,( 1+ +,( 0)( < ) 1 (
  • 1)+ ) C0 ) +/ ( ( ,+ ,1 ) ( +0 + ( 1)( ) , 0 1 ( +1+ )- ( 1 ) ( +
    • 0 0 1 B( + +/ ) ) <

    >/ + 2D E+ +
  • ,( 1+ +,( ( ,1 D )( + E3 ,- ! /1
  • < 1/%)+ ) , + - 4( , + 1 ( + < )+ ) , +/
    • ,( 1+ +,( ) 11 // / + +0 + )+ /1 (

    >1 (+0 ( + , ) 1 ( )+
  • / 0)( F )01 +/ ( 1+ +,( G , +/ 4( + ) 1 ( 1+ +,(
    • ,1 01 , H 0)0 I % 1 + - J 1-)+
    • A ; %

  !" #$ % %&amp; !% ' '% ( ++ ) !" #$ % %&amp;!!%*!* *%' ,,- !#' ∗ ∗ ∗ ∗

  • .( / + ( ( 0 0 11 , +0 2 ( 1+ +,( -3 4( (+ +, ( ( + +/ ( +0 )
  • ( / , ( ( 11 1 +0 2 ) , ( 1+ +,( 5-3 + 6+ + ( (%) + + 7,+ +/ ( )( 8

  ( ( +1 6 ): 0 + ;+1 8 1 + 9

  • )1

  !

  , 2 + < ( 1+ +,( -3 (+ 1 1

  • 01 ( 1 1 ) +0 ( ( +
    • 0 ( 1 ( )+01 ( +
    • (+ 0)( 1 ) +0 , + +) + + 4+

  / 1 + / 0

  • / ( ( + +/ ,( 1+ +,( - 9 )+ ) + ( ( : =% 1 )+ ,+ ) (+1 )+ ) , + +/

  , ) ( 0 0 11 + + ,1 / ( ( + ( + + ( + <

  • 1 + > ( ( ,, , ) 11 ( ) ) 0 ( ( , + 1 +/ +
    • 1 ,( 1+ +,( /+0 ( +10 + ? 0 ( ?
      • (+ ( + + ( ) 1 ,( 1+ +,( ) 1 , +/ ( 0 (+ +/ ( > )1

    • / + ( ( 2 ( ( ( + +/ ,( 1+ +,( 3 ,-

  • 9 ( + * / +/ + < (
  • )( ) 1 / + ( ) + + 1 )( ) ) /011 - 4(

  "

  • , +/ ,, + )( + 1 > , ) 11 - @- 6)A0 < ( (+ ( ( B,( 1+ +,( ) 1 + < ) 7 1 )(- 0 + + ,( )
  • <
  • < ,( 1+ +,( 0)( < ) 1 (
  • 1)+ ) C0 ) +/ ( ( ,+ ,1 ) ( +0 + ( 1)( ) , 0 1 ( +1+ )- ( 1 ) ( +
    • 0 0 1 B( + +/ ) ) <

    >/ + 2D E+ +
  • ,( 1+ +,( ( ,1 D )( + E3 ,- ! /1
  • < 1/%)+ ) , + - 4( , + 1 ( + < )+ ) , +/
    • ,( 1+ +,( ) 11 // / + +0 + )+ /1 (

    >1 (+0 ( + , ) 1 ( )+
  • / 0)( F )01 +/ ( 1+ +,( G , +/ 4( + ) 1 ( 1+ +,(
    • ,1 01 , H 0)0 I % 1 + - J 1-)+
    • A ; %

  2,( 1+ +,( 3 2 0 1 ,( 1+ +,( 3 ( + )1 %)0 ) + ( / ( ,( 1+ +,( + ( + /+

  • , - / + ,( )+% ( ) 1 K0 0 1 ,( 1+ +,( )+01 1 ) ( + ( +01 1 1 B,( 1+ +,( ) 1< 11 0 1 ,( 1+ +,( - L/ )+0 0 1 ,( 1+ +,( )+01 )+ 1 (

  ) 1

  ( /+ 1 ) 11 ,( ) 1 + , +1+ ) 1 + ) 1 - 6 ,+

  • ( ,( 1+ +,( +0 /1 ) ( ( )+ ( 1/- 4( + + ( ,( = ) 0 ( (

  , + ( ,0 ( + ( + ) 1 ))0 ) > 0 ( 1 1 110 + - 9 1 )+ ) , 0 1 ( 1 ( + ) 1 )+ + ,1 1 1 /

  • 1 -
  • 0)( ,, + )( +10 1 1 ( 1 + - F+ ) )+ 1 + ( ( 2)+ ( +

  )( ) 1 ,( 1+ +,( 3 )( , " * ( 7, ( 1 - 9 + ( 2 + + + )( ) 13 )( ) 1 1

  ( +, + 1 + ( + 0 / ) +/ + > )+ K0 1 ( ) 0 +/

  • ) )( ) 1 ) , +,+ + 1 + ( (+1 K0 +/
  • ,,- $&amp;%$' - 0 2 )( ) 13 )+01 1+ +/ ( (

  ( ) ( 2 )( ) 1 ,( 1+ +,( 3 + ( 0// ) 1

  • ( )10 ( 1 + M )( . / 11 + ( 9 11

  &amp;

  4+ + )( ( ( ) 0 +/ + - ( ( + ) ( + )( ,+ + > ( ) 0 +0

  • 0 )+ ( 1/ ( ( 1 1 / ( ++ +, /+

  )( ) 1 7,1 + - 4( ( %K0 ,, + ( )+ @ 1 ( +

  • !$!$ +/ ( ( 1 ( 0 C ) ( + B )( ) 1< /1 + -

  4( )( ) 1 +/ 2 )( ) 13 1 + ( 1, + ( 1 (+0 ( + C ) + + ( )( ) 1 ,( 1+ +,( ( )) , ) + ) + 11 1+) 1 ) + , ) + 0 / ) - - )( ) 1 ) + : =

  )+ - F+ ( 1 +/ ) + 20 )+ ) 1 3 ( / +0

  '

  1 1 + /0 1- A+ < ) + 1 1+) 1 ) ( ( + + + + + )+0 ) / + ( , ) >

  ( A+ +0 ) /+ ( ) 0 +/ 1 (+0 ( (+01

  • ( + + ) 11 + ( +, ) - 4( ,0 ( ( ( ) + 1 + ) ) + + ) +/ ( ,

  

$

  1 +( 9 @ ) )(1 (+1 + ( ( 1 1 + + 1 ,( + = ) 1 + ,0 0, + + ) /01 + (

  • / ) ( ) +

  ) 8 ( (+

  • ( (%)
    • ( ,+ +0 ) + ) - ( / 1 +/ ( )+ + +/ ( M+ +
    • 1 ( )( ( , ( + )) , ) +

  ,1 ( ,,1 ) + +/ ( ( 1 +/ + + + + ( +

  

166

  !" #$ % %&amp; !% ' '% ( ++ ) !" #$ % %&amp;!!%*!* *%' ,,- !#' ∗ ∗ ∗ ∗

  • .( / + ( ( 0 0 11 , +0 2 ( 1+ +,( -3 4( (+ +, ( ( + +/ ( +0 )
  • ( / , ( ( 11 1 +0 2 ) , ( 1+ +,( 5-3 + 6+ + ( (%) + + 7,+ +/ ( )( 8

  ( ( +1 6 ): 0 + ;+1 8 1 + 9

  • )1

  !

  , 2 + < ( 1+ +,( -3 (+ 1 1

  • 01 ( 1 1 ) +0 ( ( +
    • 0 ( 1 ( )+01 ( +
    • (+ 0)( 1 ) +0 , + +) + + 4+

  / 1 + / 0

  • / ( ( + +/ ,( 1+ +,( - 9 )+ ) + ( ( : =% 1 )+ ,+ ) (+1 )+ ) , + +/

  , ) ( 0 0 11 + + ,1 / ( ( + ( + + ( + <

  • 1 + > ( ( ,, , ) 11 ( ) ) 0 ( ( , + 1 +/ +
    • 1 ,( 1+ +,( /+0 ( +10 + ? 0 ( ?
      • (+ ( + + ( ) 1 ,( 1+ +,( ) 1 , +/ ( 0 (+ +/ ( > )1

    • / + ( ( 2 ( ( ( + +/ ,( 1+ +,( 3 ,-

  • 9 ( + * / +/ + < (
  • )( ) 1 / + ( ) + + 1 )( ) ) /011 - 4(

  "

  • , +/ ,, + )( + 1 > , ) 11 - @- 6)A0 < ( (+ ( ( B,( 1+ +,( ) 1 + < ) 7 1 )(- 0 + + ,( )
  • <
  • < ,( 1+ +,( 0)( < ) 1 (
  • 1)+ ) C0 ) +/ ( ( ,+ ,1 ) ( +0 + ( 1)( ) , 0 1 ( +1+ )- ( 1 ) ( +
    • 0 0 1 B( + +/ ) ) <

    >/ + 2D E+ +
  • ,( 1+ +,( ( ,1 D )( + E3 ,- ! /1
  • < 1/%)+ ) , + - 4( , + 1 ( + < )+ ) , +/
    • ,( 1+ +,( ) 11 // / + +0 + )+ /1 (

    >1 (+0 ( + , ) 1 ( )+
  • / 0)( F )01 +/ ( 1+ +,( G , +/ 4( + ) 1 ( 1+ +,(
    • ,1 01 , H 0)0 I % 1 + - J 1-)+
    • A ; %

  2,( 1+ +,( 3 2 0 1 ,( 1+ +,( 3 ( + )1 %)0 ) + ( / ( ,( 1+ +,( + ( + /+

  • , - / + ,( )+% ( ) 1 K0 0 1 ,( 1+ +,( )+01 1 ) ( + ( +01 1 1 B,( 1+ +,( ) 1< 11 0 1 ,( 1+ +,( - L/ )+0 0 1 ,( 1+ +,( )+01 )+ 1 (

  ) 1

  ( /+ 1 ) 11 ,( ) 1 + , +1+ ) 1 + ) 1 - 6 ,+

  • ( ,( 1+ +,( +0 /1 ) ( ( )+ ( 1/- 4( + + ( ,( = ) 0 ( (

  , + ( ,0 ( + ( + ) 1 ))0 ) > 0 ( 1 1 110 + - 9 1 )+ ) , 0 1 ( 1 ( + ) 1 )+ + ,1 1 1 /

  • 1 -
  • 0)( ,, + )( +10 1 1 ( 1 + - F+ ) )+ 1 + ( ( 2)+ ( +

  )( ) 1 ,( 1+ +,( 3 )( , " * ( 7, ( 1 - 9 + ( 2 + + + )( ) 13 )( ) 1 1

  ( +, + 1 + ( + 0 / ) +/ + > )+ K0 1 ( ) 0 +/

  • ) )( ) 1 ) , +,+ + 1 + ( (+1 K0 +/
  • ,,- $&amp;%$' - 0 2 )( ) 13 )+01 1+ +/ ( (

  ( ) ( 2 )( ) 1 ,( 1+ +,( 3 + ( 0// ) 1

  • ( )10 ( 1 + M )( . / 11 + ( 9 11

  &amp;

  4+ + )( ( ( ) 0 +/ + - ( ( + ) ( + )( ,+ + > ( ) 0 +0

  • 0 )+ ( 1/ ( ( 1 1 / ( ++ +, /+

  )( ) 1 7,1 + - 4( ( %K0 ,, + ( )+ @ 1 ( +

  • !$!$ +/ ( ( 1 ( 0 C ) ( + B )( ) 1< /1 + -

  4( )( ) 1 +/ 2 )( ) 13 1 + ( 1, + ( 1 (+0 ( + C ) + + ( )( ) 1 ,( 1+ +,( ( )) , ) + ) + 11 1+) 1 ) + , ) + 0 / ) - - )( ) 1 ) + : =

  )+ - F+ ( 1 +/ ) + 20 )+ ) 1 3 ( / +0

  '

  1 1 + /0 1- A+ < ) + 1 1+) 1 ) ( ( + + + + + )+0 ) / + ( , ) >

  ( A+ +0 ) /+ ( ) 0 +/ 1 (+0 ( (+01

  • ( + + ) 11 + ( +, ) - 4( ,0 ( ( ( ) + 1 + ) ) + + ) +/ ( ,

  

$

  1 +( 9 @ ) )(1 (+1 + ( ( 1 1 + + 1 ,( + = ) 1 + ,0 0, + + ) /01 + (

  • / ) ( ) +

  ) 8 ( (+

  • ( (%)
    • ( ,+ +0 ) + ) - ( / 1 +/ ( )+ + +/ ( M+ +
    • 1 ( )( ( , ( + )) , ) +

  ,1 ( ,,1 ) + +/ ( ( 1 +/ + + + + ( +

  

166

  • +) +1 ) ;+1- &amp; +- ! N + !!>)+ 0+0 - ( ,1 + + < + C ) + - 0 11

  • , / + ,( ) 1 ( + 0 ( ) + 7) , + - F+ + < 10) ) 7,1 ( >)( ( )+ ) , + +0 A+ ) + 1 1+) 11 - 4( ( + <
  • 0 A+ + ( ) 11 2 ,( ) 3>,( ) 1 ( + > 0)( ) + 1 /+ ( 2 0
  • ,( ) 3 + 2,( ) 1 ,( ) -3 4( 1 ,0
  • / + 2 ( ) 1 , ) 3 % 1 9+ + M+ G 11 % 11 ( ( 7) , ( )+ + A+ - )+01

  (+ ( ( ) + + < ( +1+ ( 0 1 ) ) 1 ) ( , , ) 11 / + (

  )+ +1+ - 1 (+0 ( 1 < ( )+ ,+ )+( , ) 0 ! ( ) - 1 + 0,

  • 9- :+ !$ > 6 ): 0 + :+ + !$* 8 ,+ (0 +0 > ;+1 !" # # !$" -
  • "
    • ,+ , +/ ( )+11 ) 6)A0 - @- # # $

      * % G+ )( ?10 ) ) 0 1 ( !##&amp; - 6)A0 - @- 2 + < O

  ) ,1 +/ ( 1+ +,( P / ) /+ ( !$ * ' ( M 1 G / F 3 &amp; &amp; !#$ !$ % ! '- 1 + 2L/ @ 0) Q+0 ( ( 3 * ) #

  • M0, 9 11 R 6 9 11 - &amp; !#' "'#%"$"- $ " , . / 11 M- - + :+ 6 ) + 1 > Q+ ) @1 !#$! > ( )+ 9 11 R 9 11 + '

  ( + +/ + < ) - * # , #

  • 9- .- 40 011 - F- )+ - M- 9 11 :- 4 11 $

  !#&amp;#%!#$$ $ +1 - +1- &amp;"% &amp;*- 9 - 2A 4( G 1+, +/ + < + ) +

  • G ) 3 # ( # !! !!% $> )(1 @- 2. (+0 % # A+ - A 1 + 1 S0 1 +/ 6 + < 3 % $ # &amp; #
    • - G- 1+

      0 R - M- :+ + M+0 1
    • !! %! -

      167

Documento similar
Tags

THE PHILOSOPHICAL NEWTON Andrew Janiak, Newto..

Livre

Feedback